DISCIPLINE SPECIFIC CORE COURSE – 7: MATHEMATICAL PHYSICS III

Course Title & Code	Credits	Credit distribution of the course			Pre-requisite of
		Lecture	Tutorial	Practical	the course
Mathematical Physics III	4	3	0	1	Should have studied DSC - 1 and DSC - 4 of
DSC – 7					this program or its equivalent

LEARNING OBJECTIVES

The emphasis of course is on applications in solving problems of interest to physicists. The course will also expose students to fundamental computational physics skills enabling them to solve a wide range of physics problems. The skills developed during course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

- Determine continuity, differentiability and analyticity of a complex function, find the derivative of a function and understand the properties of elementary complex functions.
- Work with multi-valued functions (logarithmic, complex power, inverse trigonometric function) and determine branches of these functions.
- Evaluate a contour integral using parameterization, fundamental theorem of calculus and Cauchy's integral formula.
- Find the Taylor series of a function and determine its radius of convergence.
- Determine the Laurent series expansion of a function in different regions, find the residues and use the residue theory to evaluate a contour integral and real integral.
- Understand the properties of Fourier transforms and use these to solve boundary value problems.
- Solve linear partial differential equations of second order with separation of variable method.
- In the laboratory course, the students will learn to,
 - create, visualize and use complex numbers
 - use Gauss quadrature methods to numerically integrate proper and improper definite integrals
 - Solve the boundary value problems numerically
 - Compute the fast Fourier transform of a given function