Curriculum Plan

Paper Name: Data Structures using Python

Class Type: Generic elective- Computer Science

Semester: VI

Teacher Name: Ms. Neha Singh

S.N.	Schedule (Approximate)	Торіс
1.	January	Unit 1:
		<u>Growth of Functions, Recurrence Relations</u> : Functions used in analysis, asymptotic notations, asymptotic analysis, solving recurrences using substitution method, recursion tree, Master Theorem.
2.	February	Unit 2:
		<u>Arrays</u> : array operations, applications, sorting, two-dimensional arrays, dynamic allocation of arrays
		<u>Linked Lists</u> :
		Linked Lists: singly linked lists, doubly linked lists, circularly linked lists, time complexity analysis of operations
		Stacks: stack as an ADT, implementing stacks using arrays, implementing stacks using linked lists, applications of stacks; time complexity analysis of operations
		Assignment/Presentations/Test (Unit 1 & 2)
3.	March	Unit 2:
		Queues: queue as an ADT, implementing queues using arrays, implementing queues using linked lists
		<u>Deques</u> : double-ended queue as an ADT, time complexity analysis of operations.
		Unit 3:
		Recursion: Recursive functions, linear recursion, binary recursion.
		Unit 4:
		<u>Trees:</u> definition and properties
		Assignment/ Presentations/ Tests (Unit 2 & 3)

4.	April	Unit 4:	
		Binary trees : definition and properties, traversal of binary trees and their time complexity analysis.	
		Binary Search Trees: insert, delete (by copying), search operations, time complexity analysis of these operations;	
		Balanced Search Trees: motivation and introduction, AVL Trees	
		Assignment/ Presentations/ Tests (Unit 4 & 5)	
		Unit 5	
		Binary Heaps: motivation and introduction, heapsort, building heaps	
		REVISION	
		Mock Practical/ Viva/ Mock Exam	

Essential/recommended readings

- 1. Goodrich, M.T, Tamassia, R., & Mount, D., *Data Structures and Algorithms in Python*, Wiley, 2021
- 2. Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein C. *Introduction to Algorithms*, 4th edition, Prentice Hall of India, 2022.
- 3. Taneja, S. and Kumar, N., Python Programming: A modular approach, Pearson, 2017.

Additional References

- (i) Sahni, S., *Data Structures*, *Algorithms and applications in C*++, 2^{nd} edition, Universities Press, 2011.
- (ii) Langsam Y., Augenstein, M. J., & Tanenbaum, A. M. *Data Structures Using C and C++*, Pearson, 2009.
- (iii) Drozdek, A., Data Structures and Algorithms in Python, 1st edition, Cengage Learning, 2024.