Guidelines for B.Sc. (H) Computer Science Semester IV (NEP UGCF 2022)

Design and Analysis of Algorithms

S. No.

Topics

Contents

Reference

Hours

Unit 1% - Searching, Sorting,
Selection

Ch2-21,22
Ch6-6.4
Chg8-8.1,8.2,83
Ch9-9.1

[1]

Unit 2 - Graphs

Ch3

(2]

Unit 3 - Divide and Conquer

Ch2-23
Ch4-42
Ch7-7.1,7.2,7.4 (upto 7.4.1)

[1]

Unit 4 - Greedy algorithms

Ch15-152

Ch 4 - 4.1 (upto page 121,
excluding Extensions), 4.5 (only
Prim’s Algorithm and related
theorems/sub-sections to be
discussed)

[1]
(2]

Unit 5 - Dynamic Programming

Ch6-6.1,6.2,6.4

(2]

Unit 6 - Hash Functions,
Collision resolution schemes

Ch 11 - 11.2 (except Independent
Uniform Hashing and Analysis of
Hashing with chaining), 11.3
(upto and including multiplication
method), 11.4 (except Analysis of
open-address hashing)

[1]

- Linear search, binary search, bubble sort and selection sort are to be covered from the
appendix attached at the end of the guidelines.

References
Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein C. Introduction to Algorithms, 4th
edition, Prentice Hall of India, 2022.

2. Kleinberg, J., Tardos, E. Algorithm Design, 1% edition, Pearson, 2013.

1.

Additional References
Basse, S., Gelder, A. V., Computer Algorithms: Introduction to Design and Analysis,

L.

3" edition, Pearson, 1999.

Practical List

1) Write a program to sort the elements of an array using Insertion Sort (The program
should report the number of comparisons).

2) Write a program to sort the elements of an array using Merge Sort (The program
should report the number of comparisons).

3) Write a program to sort the elements of an array using Heap Sort (The program
should report the number of comparisons).

4) Write a program to sort the elements of an array using Quick Sort (The program
should report the number of comparisons).

5) Write a program to multiply two matrices using the Strassen’s algorithm for matrix
multiplication.

6) Write a program to sort the elements of an array using Count Sort.

7) Display the data stored in a given graph using the Breadth-First Search algorithm.

8) Display the data stored in a given graph using the Depth-First Search algorithm.

9) Write a program to determine a minimum spanning tree of a graph using the Prim’s
algorithm.

10) Write a program to solve the 0-1 knapsack problem.

For the algorithms at S. no 1 to 4, test run the algorithm on 100 different input sizes varying
from 30 to 1000. For each size find the number of comparisons averaged on 10 different input
instances; plot a graph for the average number of comparisons against each input size. Compare
it with a graph of n logn.

APPENDIX

020C ‘0¢ 4°equed3(

urroe'np-sogeidnsu

e1dno) ewi@aN

SWYlo3|y Jo sisAjeuy pue ugissg 10T DSDIN

Tway Sutyoessy/ezdnlu. /ut-oe-np-o1doad//:d3ay
:o8edgam Aw uo 3|ge|leAB S4B S9]0U SWOS

A

J9pJey YoM 01 SABY ||IM 3S9Y1 YIIM JeljIWe} J0U 948 OYyM 3soy |
ApoInb 9s9yl JO SWOS MIIASI [|IM S\\ <«
UOI1DIPEeIIUOY)
AQ JoOidd pue uoldnpu| 91| sanbiuydal |edllewsyie|N «
da pue Apsaun ‘yanbuoy pue spiai oY1) senbiuyssl uSiss(
WYIOo3|y ‘Uol11d9|9G pue Juinog ‘Sulydiesg 9| sw|qoid
10} SWYIOS|y ‘Saunidonulg eje(] diseg yim Ajueljiwe

s911sinbaJs-aud

MLLLEED]
pua
++1 35/3
puo
T EEY 7
uayy Ay = [ify
op u > I aym
[=1

SSTMISYTO
0 ‘Punoj st 1 jI A3y JO 9dU344NID0 1S41} JO Xapul :Indino
Aoy ‘lu - 1]y Aewy @ andu

:SMO||0} Se g J931deyd jJo wy3lio3|e Yd4ess Jesul| 9y 9314M3J SN 197

SSould024J07) . ydlesg Jesaul

SS9U1294400 9yl dA0Jd 03 sduelieau| dooT syl 9s() «
uoldnNpu| |esilewsyile|p suisn adueleAu] dooT syl sn0Id «

doueleau| doo «

9N0Jd 01 Sdo1G

[+U>4>TA

[1—4""1lv 2 A ¢
I=1"7

‘SWIl ;4 9yl J0J JUsWRle]S
SIYM .. OY2 S9YdeaU |043Uu0d 3yl USYAA : (4)H SiseylodAy

MLLLEED]
pua
++1 95/9
pua
I uanjau 7
uayy Aoy = [ify y

op U > I 3jiym
1=

douelieAu| doo’

(T+w)H <= (w)y :siseyrodAy uononpul g
‘A|snondeA spjoy wied syl ‘T = J USYM :2se”) aseq '
"J Uuo uolnpul Aq Jooud

1—4"1lv 2 Ay ¢
I=1"T

'SWi} ;4 dY3 J0) JUSWIDIEIS
SIYAMA .. Y3 S9YdeaU |043U0D Byl USYAA : (/) SiseylodA

doueleau| dooT 4O Jooid

949y 1u3saJd jou Ad)
A

=(wW)H
v Aely
0 uanjoal
pus
[T—41lv 2/ ¢ oty o8y
4=1"1 pud
‘dwll 34 241 10} 1uswWalels I ulinjal 7
uayy Aoy = [ifyy g

BIUAA ., PY3 S9YdEaJ |043U0d
3yl UsYpA : (41)H siseyrodA

op U > I 3jiym
[=

sisaylodAH uoidnpuy

T+w=l

949y juasaud jou Asy

/“ : |
=(T+W)H
- 949y juasaud jou Ay
/; > |
/ =(w)H
v Aedy
0 uanyoa
pus
4=1"1 pud
‘dwll 34 @Y1 10} 1uswWalels I uinjoal 7
uayy Aoy = [ifyy g

BIUAA ., PY3 S9YdEdJ |0J3U0D
3yl UsYpA : (41)H siseyrodA

op U > I 3jiym
[=

sisaylodAH uoidnpuy

T+W=l 949y 1uasaud jou Asy

\
/“ J

ﬁu =(T+W)H

A9y =F [w]Vy :2n04d 0] \

w=l
/ 949y juasaud jou Ay
[

A

/ =(W)H
v Aedy
0 wanjoi1
pua
[T—41lv 2/ ¢ oty o8y
4=1"1 pud
‘dwll 34 241 10J 1uswWalels /I uinjal 7
I|IYAA ., OY3 SSydeas |0J3u0d uayy Aoy = [ifyy s

op U > I 3jiym
[=

3yl UsYpA : (4)H siseyrodA

sisaylodAH uoidnpuy

0 SU4N3dJ WYOS3|e Syl pue g JuswWole}s 0] S90S |0JIU0D
‘T 4+ u =1 20uIg "ASy Sy3 uleluod jou ssop [u " T|y pue
I + u =1 ‘sissyrodAy jueueaur dooj Ag T +u =y 7 8se) ¢
‘Aeqse a3yl ul Ay syl JO 95U344n220 1sJ1} 3yl Jo uoilisod syl
S| f JUSWae1s ul psuinial anjea syl sny | “Asy = ([y]ye 1)y
9snedaq paleulwsal dooj sjiym syl ‘os|y A9y syl uiejuod
10U S90p [T — % " " T]i pue ¥ = '9Sed Siyp u| ‘U > ¥] 9se) T
‘Sowll T — ¥ Pa1ndaxa sl doo| syl Jo Apoq 971 "sswil ¥ Aj3oexs
P91ND3X3 SI JUSWI1eIS I|IYAA,, Ul UOILIpUOD 1531 3y3 1eyl ssoddng

[T -4 1lv 2 A ¢
=17
'Swi} ;4 dY3 JO) JUSWIDIEDS
BIUAA ., PY3 S9YdEaJ |043U0D
3yl UsYpA : (41)H siseyrodA

WLLLEE]]
pua
+41 955
pua
fwnaa |
uayy Aoy = [ifyy g

op U > I 3jiym
1=

SS9U123.4407) JO JOOId

ursenprso®eldnbu
eldno ewnasN
swylliobyy Jo sisAjeuy pue ubisag

TOE DVYON

yoleag Jeaul] ‘b3
9p0HOPNasy

cwJojiad 03 aney Auelaadas ay3 pip suosiyedwod
Auew Moy ‘punojjou sem o[y pajsanbad ayj pue sojy U aJaM I3yl)| e

pesaH ay3 Jo s3sanbaJ ayj 03 3uipuodsal 33440 ue je Aue}addas iy 94n314

.puno JoN
a|id, Yym spuodsal

Aiejaioag

>
S9|14 pasiuedioun

3ululeiuod 90uJo s Aie3aldas

|

92440 s,dOH

610 suoissiwpe

VYOI, Paleqe| 9|1
10} 1sanbau sayeN

T-L1 03 0 30U pue (3pod0opnasd) swyllJoS|e Ul U 03 T WOy 3Ul3Ie)s SadIpuUl asn SAN 910N

() wInjax
pua

pusa

1 manjax |

uatyy fiay = 1y Ju
op u 0} T —+ 1 .10]
ISLMIINIO () “PUNOT ST T JT A9y JO 9dUaIINID0 1811 Jo xXopul :gndino
fia 3y ‘[u--- 1]y :Aeiry : yndur

(DIB9S TBOUIT :T WILI0S] Y

‘Yoaeag [enjuanbag /xesur paj[ea S1 1] "10U 10 I ST J1 SUTILIDOP
0} A[[erjuenbes juatee gora SOUIIEXe (] WIII0S[e SUIMOo[[0] 911 IOPISuo))

Lo O IR -~ I ' B~ R o

‘ISUNLIYIO () UL 40 fivaan oY) Ul punof
St T adaym TIPUL/uo1gooo] oyl puy o] st waqodd ‘T Juswas 1o6ivy v puv fiviup
up up pasojs {“rtxtlr} sjuswage fo jas v uaarr) Buiyouvag "1 woryuge(J

Buiyoieas

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

9 G ¢l =)obue)

1 € [A L
e o Je]s o]

yoJeas Jeaul Jo aduwexy

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

}ob6.1e)

9 g 14 € [A [
ElENEIENRNo]

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

}ob6.1e)

9 g 14 € A |
EElEIAENoIRS

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

}ob6.1e)

9 g 14 € [A |
x Jo e |Gl & | ¢

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

}ob6.1e)

9 g 14 € [A |
x| JQef] s [& | ¢

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

9 }ob6.1e)

g 1 € [A |
x|yl e | s | a] ¢

puno4 eyeq 1ebie|

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

wiajl 3sdi ayl yum yojeuw ase jsog
}ob.e)

9 G 14 € (A 2
ElEIEIEERN(o]
uosuedwod |

-9SED }Ss9yg ase) 1sag SsIsAjeuy YyoJeas Jeaul

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

wiajl 3se| ayl yym yojeuw :ased JSIOAA
9 G 1 e rd l jJob.e)
[CIENEEEREERE

suosiiedwod N

.9se) }SIOMA

2587 1510/ SISAjeuy Yyo4eas Jeaul

TOMG [IMI3 L L €SO/ 1.€ | SO/AUEa[q/oWoU/Npa [os1eD 50 MMM/ SOR|

yojew ou :yosieag |[njssaaonsun

9 S Jobue)

1 € A L
e o Je]s o]

suosiiedwod N

:|2Jeag |N}ssaoonsuf SSeD)
YoJeas 1NJSSa0oNnsuN SIsAleuy yoieas JeaulT

14

T+U=T+ZLl=TLsuy
;S1'ZL ¢ ST 1 :YyoJeas |nyssadonsun ue Jo ased uj
T=Cl=Tl:suy
;S1Z1 ¢ ST :YydJeas |nyssaddns ased 359 ay3 U
U=7] =T :Suy
;SIZL ¢ SIT1 :YyoJeas |nyssadons ased 3SI0M ay3 U|
42JeaS [NJSS2IINSUNUB UOS T + U =T + 2] = T 1 ‘Y2JE3S |NJSSa20NsS e 40y Z | = T 1 :Suy

;71 Pue T] usamjaq diysuoile|al ayy sl Jeypn

L

() anjoa 9

Al muﬂmw 1
—u_ﬁﬁm__ 3

¢TI }9T _ &

- ueyy oy = ify y1 | =@
T

l_ﬁ_ﬁu u ..U_.w .H —+ .m —Hm.u_.._w

ISTMIBJO () ‘PUNO] ST 31 J1 Aoy JO 20UaLInDD0 381 Jo xopul :3ndino
fia zy - 1]y Aeaay @ ndua

[adeos JeoUul'] - [:.:.mu._.“pd_u,mﬂﬂw

Sd21S 9AIIWIIC JO JogUINU 8Y] buiqunod : YdJ4eas JesaulT JO SISAjeuy

N ™ <

al

yodJeas |njssaddnsunueulg+uUg=T7+U+ (T +U) e
UdJeas |nJssodons ased 1sagqaylui S =T +T +T @
U2Jeas [NJSSa2dNS ased }SIOMayjul T +uUz =T +U+U e

= SISIY}
(Juawiajels uiniad 9yl JoJ)T +ZL+TL e

(do31s aAI}IwWIId U0 Se T Jusawale]s ul auop uosiiedwod
pue juswusisse, 3uljunod) :sdais aAIIWIId JO Jaquuinp |e30]

sdais aAnRiwid Jo Joaguinu ay] bununod : YyoJeas JeaulT Jo SIsAjeuy

'SIY3 94n3ded 03 suoijdunj 21303dWASE JO UOIJOU SY3 SUyp ||IM AN

F2+UED coeu
|
(22 4 uSo[19)

‘2 pue £ ‘Z2 ‘T2 SjuelIsuod ayj Jo aAI3dadsadll ¢ 0=

o|dwexd J0

"U 93Je| Joj Juedyiugdisul
W 029 SJUBISUOD ‘SWYIII03|e OM] JO SDWI} Suluund aJedwod saM USUAA

S1URISUOD BY] bulioub)

G Josdajsul QT 03 QT WoJ}Sallea u o
‘suosliedwod

JO Jaquinu 23eJaAe pue 3SI0M 1s9g - 3sed Yyoea Jojyded3 ay3 10|d o©
'9Z1S 3ndul yoea Joj suosiiedwod

A3y JO Jaquinu a3y} JO 93eJaAE pue wnwixew ‘wnuwiuiw syl ajndwo) o
|NJssa3o$nsun

T SN|d |NJSS920NS U - SASY JUSJSHIP T +U YIM 3} und ‘U 9zis 3ndul AJsAs Jo{ o©
"ydeus

9Y3 j0|d pue syndul snolJeA JoJ suosiiedwod A9y JO Joaquinu ay3z Juno) o

yoJeag Jesul] juswadw| e

:JUBWIUZISSYy suluiwieldodd

€20T ‘1T |udy

ur'oe'np-sogeidnsu

e1dno ewi@aN

SWY1L03|Yy JO sisAjeuy pue udissq :T0E DVDIIN

pesaH 3ay3 Jo s3sanbau 3y3 03 Suipuodsad 92440 ue je Aie3addas iy 94n3i4

Apfoinb puno4
3|14, UIm spuodsal
Aiejaioag

S9|14 palJos /paziuediO
Suruieuod 9oyJo s A1e3aad9g
920 S.dOH

ojoyd xa01s Awepe B

.61 0¢ suoissiwpe

YOI, P3IegeE| 3]}
1o})senba. saye

j 19158} UDJeds am ue)

pesaH ay3 Jo s3sanbau ay3 03 Suipuodsad 92440 ue je Aie3addas iy 94n3l4

>
S9|14 palJos /paziuediO M w

SululeIu0D 97440 S A18124095
92440 S.dOH

Apfoinb puno4
3|14, UIm spuodsal
Aiejaioag

ojoyd xa01s Awepe B

.61 0¢ suoissiwpe

YOI, P3IegeE| 3]}
1o})senba. saye

Ateuol1d1p e ul piom e Joj 3ulydiesq

Asy>pi

G6

06

GE

08

0L

09

0s

Ot

0e

0e

0T

yosesag Aseulg

GO Koy

Asy>pi

G6

06

GE

08

0L

09

0s

Ot

0e

0e

0T

yosesag Aseulg

GO Koy

‘A|30941p PaA|0S
s 1 ‘Joyeassy (uoipuod Suileulwssl,, Syl paj|ed) ploysa4yl
SWOS < 97Is S,}1 se 3uo| os (wa|qoid Js|jews ay3 uo wyiLose
swes syl Suif|dde Aq "5'1) AjpAIsindaa panjos sI wisjqoidqns
‘wdjqo.d (498381q) |euiBlio sy3 Jo uoiINn|os sy3
ulelqo o1 swa|gqo4dgns syl JO uOIIN|OS SY] SUIqWO) : dUIqWO?) '€
‘wa|qoJdd-qns yoes aA|og : Jsnbuo) g
'9ZIG J9||ews
JO swi|qoidqgns Jo Jaqunu e ojul wa|qoid syl SpIAI(] : SPIAI] T

w3dipeied 4anbuo?) pue 3piAI(]

pud
pud
(Ao ‘T- piw ‘1s1l) ‘V/)oAISINdsy-y21eaG-Aleulg 7
cHE
pud
(Ao ‘158 ‘T + piw ‘y)oAIsinoey-yoieas-Aieurg |
uayy Aoy > [piwify
pud
piW uIN}a4 7
uayy Aoy=[piw|y j
¢/ (3se) + 1s4y) = piu
uayl ise; > isiiy Ji
Aesse
931 JO S9DIPUI 1SE| DYl pue 1Sily Sy} 248 ISe|,, pue 1Sl ./
(Aoy ‘1se| ‘1s41) 'y)aAISINDRY-ydiesg-Aieulg

9SIMJSYIO T- ‘puno} AsY JI A9y Jo xapuj :3ndino
Aoy ‘lu - 1ly Aewny @ andu

d|ppiw 3y3 ul Hdg :yosesg Aeulg

ows(] Y2INY

3|} | dwed

(= (Um
‘USY | "9SED 1SIOM Ul wyllo3|e yduess
Aieuiq ay3 Aq pswuoyiad suosuedwod jo ssquinu syl 3q (U)Af 197

Alixsdwon) swi |

(He/um = (um

(= (UM

‘USY | "9SEeD 1SIOM Ul wyllo3|e yduess

Aieuiq ay3 Aq pswuoygiad suosuedwod jo ssquinu oyl 3q (U)Af 7

Alixsdwon) swi |

¢+ (2¢/uym = (uym
AHE/um = (Um
= (U)m

‘USY | "9SED 3SJOM Ul wYylloS|e yoiess
Aieuiq ay3 Aq pswuoygiad suosuedwod jo ssquinu oyl 3q (U)Af 197

Alixsdwon) swi |

i= (UM

¢+ (2¢/uym = (uym
AHE/um = (Um
= (U)m

‘USY | "9SED 1SIOM Ul wyillo3|e yduess
Aieuiq ay3 Aq pswuoygiad suosuedwod o ssquinu oyl 3q (U)A4 17

Alixsdwon) swi |

‘USY | '9SBD 1S9q Ul WyllIoJ|e Yd4eas

Aieuiq ay3 Aq pswJopiad suosuedwod jo ysquinu ayi oq (u)g 197
ugol=(U)m (= (UM

¢+ @@/um=(u)m

HE/um = (Um

(= (Wm

‘USY | "9SED 3SJOM Ul wYy3llo3|e yoiess

Aieuiq ay3 Aq pswuoygiad suosuedwod o ssquinu oyl 3q (U)Af 197

Alixsdwon) swi |

(= (u)g

‘USY | "9SBD 1S9q Ul WyllIoJ|e Yd4eas

Aieuiq sy3 Aq pswuoyiad suosiiedwod Jo Jsquinu syl 9q (u)g 197
ugol= ()M (= (UM

¢+ @@/um=(u)m

HE/um = (Um

(= (Wm

‘USY | "9SED 3SJOM Ul wYylloS|e yoiess

Aieuiq ay3 Aq paswuoyiad suosuedwod jo ssquinu syl 3q (U)Af 17

Alixsdwon) swi |

1= ()g

(= (u)g

‘USY | '9SBD 1S9q Ul WyllIoJ|e Yd4eas

Aieuiq sy3 Aq pswuoyiad suosiiedwod Jo Jsquinu syl 9q (u)g 197
ugol= ()M (= (UM

¢+ @@/um=(u)m

HE/um = (Um

(= (Wm

‘USY | "9SED 3SJOM Ul wYy3llioS|e yoiess

Aieuiq ay3 Aq pswuoygiad suosuedwod Jo ssquinu oyl 3q (U)Af 197

Alixsdwon) swi |

1c0c ‘v Aenuer

urroe'np-sogeidnsu

e1dno ewiaN

SWYo3|y O sisAjeuy pue usissqg ‘T0T DSOIN

0 uanlau
pus

pus

I-plw — ySu |

9s|o

pua

T+pw — 13 |
uayy (4ey > [piwfy) p
pua

plw uinjaJ 7

uays (4oy=[piwfy) 3
¢/ (3y3u-+1y3|) — piw
op 1Y3u > 13 AIyYm

u— ysu ‘T — YS9

(Aox ‘u ‘[ly)yoseag-Aieurg

yoieag Aeurg

pa140s Apeauje
SI paydJess 9q 01 Aesse ay3 4 pandde aq Ajuo ued youess Aseulg

'9SIMJISYI0 () =PIlwX3pul
‘PUB PUNO} JI ‘Y Ul X JO DULINIIO UB = pIW~X3pul
Y1IM S91eulwl wyllios|e youess Aleulq ay| : ndinQ «

x uanig pue [uly > > [e]lv > [g]v > [1]v 1843 yons
paJopJo (0 <u) swall u Suluieuod | Aewe ue UsAID) : Indu| <

yoseag Aseuig jo O/] ayi Suluis(g

08

G

GE

0€

GC

0¢

0¢

0¢

Gl
Gl 0l |
Gl 0l |

G| "OU 3U) J0} YdJeas

05

08

G

G

GE

GE

0€

0€

0€

GC

0c

Gl 0l !

0¢ "OU 3} J0j YdJeas

'anJ1 Ajsnonoea
SI wlie|d syl VUS| ‘U = | pue T =" T = ¥ 9Se) aseg «
‘uoilonpul Aq juerieaul doo| syl snoud ||Im SN\ <«
Sl <1 Aians oy pue g > 1 AJSns
10} X Z£ [1ly swn 42! Y} 10} JUSWIIEIS 3|IYM dY3 Saydea.
|042U0D By} usym :(¥)H ‘4 > ¥ > T 404 :Jueuenu| doo] «
PWR yy
931 JOJ 1USW1E]S S|IYM Y3 SSYdeas |041u0d 3yl usym AjpAIrdadsal
]Se| pue 1sJl} Jo senjeA syl oq 7| pue 7y 19| ‘4 > ¥ > T 404 ‘suni ¢
Sul] wou} Suipels dooj syl Sswill JO JSqunu wnwixew 3yl 3q 4 197

juelieAu] doo ay| :SS9UD9.I0D JO JOOUIH

suay Juasaid A L aiay juasaid
1ou Az } jou A=y

awn (T +) dooy
9Y31 J91Ud 3, up|nom am asd a|qissod Jou - [wly = X T 9se) <«

S9111|1q1SSOd 934y} SABY M ‘UOIEIDH ,y) Sy} U| "BN4} S|
(T 4+ X%)H ey snoid |Im SpN onud sI (¥)H ssoddng :deig sAdNpuU|

D w = a1y # x 9
T w = A [Ny S Pw]y > x
SABY 9M ‘P30S SI Aesue Y3 90uIg

aiay juasaid T EM=T 4 243y juasaid
jou A=y 3 3 jouhay

1 o 1

_ = T+H |4
! 1 _ :

[wly > x g ase) <

242y Juasaad
jou Aay

A

s = 1p [y # x o
T we = Ay < Pwly <x
9ABY 9M ‘pa1Jos SI Aesue ayj 9oulIg

I L
I+ W= " aiay jussaid
you Aay 4

[lw)y < x g 9se) <

"A|309410D S3JOM
wy3ioS|e sy3 199402 si (X)H 1usw3els sy3 1eyl Sulwnsse SdUsH
] < % Se smoj|o) wiepd ayy Y <
10} pue 4 > 110} x # |1y ‘sissyrodAy jueueaur dooj Ag
:9SEeD SIYy3 ul
Aeiie ayi ul Juasaid 10U SI JUSWIJD SY1 1BY] SNTJB IX_U [[IM AN
‘0 udniaJl pue juswaiels 3|IYm ayl 1Ixa am ‘4 < ¥ J| g 9seD) «
Wy —
PIWTX3PUI SE X JO 92U34UNID0 JO uoijisod e sI piw~xapul ‘sny |
'x = [*w]y ssnedsq doo| ay3 woi) 1X3 A\ H > Y T 9Se) <

‘SowlI] 1 PaINd9aXe SI UOILIPUOD 1S9] 3yl asoddng

juerieAul dooj syl Suiwnsse wyllios|e syl JO SSaU3dD440))

3] < ¥ se smo||o} wied
Syl ¥ < 1404 pue ¥y > 1oy x # 1]y ‘sissyrodAy jueueaur dooj Ag

juerieAul dooj syl Suiwnsse wyllios|e syl JO SSaU3dD440))

‘USY | °9SEeD 1SIOM ul wyilio3|e ydiess
Aeuiq sy1 Aq pawuoyiad suosiiedwod Jo Jaquinu 3yl 3q (U)A4 7

Alixs|dwon) swi |

(= Um
‘USY | "9SBD 1SJOM Ul WY3lIOF|e YdJeas
Aeuiq sy1 Aq pawuoyiad suosiiedwod Jo Jsaquinu 3yl 3q (U)A4 197

Alixs|dwon) swi |

(He/um = (Um

(= (Um

‘USY | "9SBD 1SJOM Ul WY3lIOZ|e YdJeas

Aeuiq sy3 Aq pawuoyiad suosiiedwod Jo ssaquinu 3yl 3q (U)A4 197

Alixs|dwon) swi |

¢+ @/uIm = (U)m

(He/um = (Um

(= (Um

‘USY | "9SBD 3SJOM Ul WY3lIOF|e YdJeas

Aeuiq sy1 Aq pawuoyiad suosiiedwod Jo ssaquinu 3yl 3q (U)A 7

Alixs|dwon) swi |

(= (UM

¢+ @/uIm = (U)m

(He/um = (Um

(= (Um

‘USY | "9SBD 3SJOM Ul WY3llIoF|e YdJeas

Aeuiq sy3 Aq pawuoyiad suosiiedwod Jo ssaquinu 3yl 3q (U)A4 7

Alixs|dwon) swi |

‘Usy | "9SBD 1S9q Ul wylloJ|e yoieas

Aieuiq sy3 Aq pswuoyiad suosiiedwod Jo Jsquinu syl aq (U)g 197
usol = ()M i= UM

2+ (2/)m = (u)m

(H/um = (Um

(= (Um

‘USY | "9SBD 1SJOM Ul WYlIOF|e YdJeas

Aeuiq sy1 Aq pawuoyiad suosiiedwod Jo Jsaquinu 3yl 3q (U)A4 97

Alixs|dwon) swi |

i=(u)g

‘Usy | "9Sed 1S9q Ul wyllog|e youess

Aieuiq sy3 Aq pswuoyiad suosiiedwod Jo Jsquinu syl 3q (U)g 197
ugol = (UM i= (UM

¢+ @/um = (u)m

HE/uIm = (Um

i=(m

‘USY | "9SBD 3SJOM Ul WY3llIOF|e YdJeas

Aeuiq sy1 Aq pawuoyiad suosiiedwod Jo saquinu 3yl 3q (U)A4 7

Alixs|dwon) swi |

1= (u)g

i=(u)g

‘Usy | "9Sed 1S9q Ul wylloF|e youess

Aieuiq sy3 Aq pswuoyiad suosiiedwod Jo Jsquinu syl 3q (U)g 197
ugol = (UM i= (UM

¢+ @/um = (u)m

HE/uIm = (Um

i=(m

‘USY | "9SBD 1SJOM Ul WY3lIOF|e YdJeas

Aeuiq sy3 Aq pawuoyiad suosiiedwod Jo ssaquinu 3yl 3q (U)A4 97

Alixs|dwon) swi |

sorting

© Cengage Learning 2013

he efficiency of data handling can often be substantially increased if the

data are sorted according to some criteria of order. For example, it would

be practically impossible to find a name in the telephone directory if the
names were not alphabetically ordered. The same can be said about dictionaries,
book indexes, payrolls, bank accounts, student lists, and other alphabetically orga-
nized materials. The convenience of using sorted data is unquestionable and must
be addressed in computer science as well. Although a computer can grapple with an
unordered telephone book more easily and quickly than a human can, it is extremely
inefficient to have the computer process such an unordered data set. It is often neces-
sary to sort data before processing.

The first step is to choose the criteria that will be used to order data. This choice
will vary from application to application and must be defined by the user. Very often,
the sorting criteria are natural, as in the case of numbers. A set of numbers can be
sorted in ascending or descending order. The set of five positive integers (5, 8, 1, 2, 20)
can be sorted in ascending order resulting in the set (1, 2, 5, 8, 20) or in descending
order resulting in the set (20, 8, 5, 2, 1). Names in the phone book are ordered alpha-
betically by last name, which is the natural order. For alphabetic and nonalphabetic
characters, the American Standard Code for Information Interchange (ASCII) code
is commonly used, although other choices such as Extended Binary Coded Decimal
Interchange Code (EBCDIC) are possible. Once a criterion is selected, the second
step is how to put a set of data in order using that criterion.

The final ordering of data can be obtained in a variety of ways, and only some
of them can be considered meaningful and efficient. To decide which method is best,
certain criteria of efficiency have to be established and a method for quantitatively
comparing different algorithms must be chosen.

To make the comparison machine-independent, certain critical properties of
sorting algorithms should be defined when comparing alternative methods. Two
such properties are the number of comparisons and the number of data movements.
The choice of these two properties should not be surprising. To sort a set of data, the
data have to be compared and moved as necessary; the efficiency of these two opera-
tions depends on the size of the data set.

491

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

492 W Chapter 9 Sorting

Because determining the precise number of comparisons is not always necessary
or possible, an approximate value can be computed. For this reason, the number
of comparisons and movements is approximated with big-O notation by giving the
order of magnitude of these numbers. But the order of magnitude can vary depend-
ing on the initial ordering of data. How much time, for example, does the machine
spend on data ordering if the data are already ordered? Does it recognize this initial
ordering immediately or is it completely unaware of that fact? Hence, the efficiency
measure also indicates the “intelligence” of the algorithm. For this reason, the num-
ber of comparisons and movements is computed (if possible) for the following three
cases: best case (often, data already in order), worst case (it can be data in reverse
order), and average case (data in random order). Some sorting methods perform
the same operations regardless of the initial ordering of data. It is easy to measure
the performance of such algorithms, but the performance itself is usually not very
good. Many other methods are more flexible, and their performance measures for all
three cases differ.

The number of comparisons and the number of movements do not have to co-
incide. An algorithm can be very efficient on the former and perform poorly on the
latter, or vice versa. Therefore, practical reasons must aid in the choice of which algo-
rithm to use. For example, if only simple keys are compared, such as integers or char-
acters, then the comparisons are relatively fast and inexpensive. If strings or arrays of
numbers are compared, then the cost of comparisons goes up substantially, and the
weight of the comparison measure becomes more important. If, on the other hand,
the data items moved are large, such as structures, then the movement measure may
stand out as the determining factor in efficiency considerations. All theoretically es-
tablished measures have to be used with discretion, and theoretical considerations
should be balanced with practical applications. After all, the practical applications
serve as a rubber stamp for theory decisions.

Sorting algorithms are of different levels of complexity. A simple method can
be only 20 percent less efficient than a more elaborate one. If sorting is used in the
program once in a while and only for small sets of data, then using a sophisticated
and slightly more efficient algorithm may not be desirable; the same operation can be
performed using a simpler method and simpler code. But if thousands of items are to
be sorted, then a gain of 20 percent must not be neglected. Simple algorithms often
perform better with a small amount of data than their more complex counterparts
whose effectiveness may become obvious only when data samples become very large.

m ELEMENTARY SORTING ALGORITHMS

9.1.1 Insertion Sort

An insertion sort starts by considering the two first elements of the array data, which
are data [0] and data [1]. If they are out of order, an interchange takes place.
Then, the third element, data [2], is considered. If data [2] is less than data [0]
and data[1], these two elements are shifted by one position; data [0] is placed
at position 1, data [1] at position 2, and data [2] at position 0. If data [2] is less

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Section 9.1 Elementary Sorting Algorithms W 493

than data [1] and not less than data[0], then only data [1] is moved to posi-
tion 2 and its place is taken by data [2].If, finally, data [2] is not less than both its
predecessors, it stays in its current position. Each element data [i] is inserted into
its proper location j such that 0 = j = i, and all elements greater than data [1] are
moved by one position.

An outline of the insertion sort algorithm is as follows:

insertionsort (datal],n)
for i = 1ton-1
move all elements datalj]l greaterthan datalil by one position;
place datalil in its proper position;

Note that sorting is restricted only to a fraction of the array in each iteration, and
only in the last pass is the whole array considered. Figure 9.1 shows what changes are
made to the array [52 3 8 1] when insertionsort () executes.

FIGURE 9.1 The array [5 2 3 8 1] sorted by insertion sort.

i 1 2 3 4 5
j 1 0 2 1 3 4 3 2 1 0

e 2o——— Sy Ea L
05 \\\‘ 5 2————__;\\\\‘ 2 2 2 2 2 \\\> 2 1
1]2 5 5 \\\> 5 3 3 3 3 * 3 2 2
2(3 3 3 5 5 5 5 \\\»5 3 3 3
318 8 8 8 8 8 \\\> 8 5 S 5 S
411 1 1 1 1 1 8 8 8 8 8

Because an array having only one element is already ordered, the algorithm starts
sorting from the second position, position 1. Then for each element tmp = datalil,
all elements greater than tmp are copied to the next position, and tmp is put in its proper
place.

An implementation of insertion sort is:

template<class T>
void insertionsort (T datal[], int n) {
for (int 1 = 1,3; i < n; i++) {
T tmp = datalil;
for (j = 1i; j > 0 && tmp < datalj-1]; j--)
datal[j] = datalj-1];
datal[j] = tmp;

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

494 W Chapter 9 Sorting

An advantage of using insertion sort is that it sorts the array only when it is re-
ally necessary. If the array is already in order, no substantial moves are performed;
only the variable tmp is initialized, and the value stored in it is moved back to the
same position. The algorithm recognizes that part of the array is already sorted and
stops execution accordingly. But it recognizes only this, and the fact that elements
may already be in their proper positions is overlooked. Therefore, they can be moved
from these positions and then later moved back. This happens to numbers 2 and 3 in
the example in Figure 9.1. Another disadvantage is that if an item is being inserted,
all elements greater than the one being inserted have to be moved. Insertion is not lo-
calized and may require moving a significant number of elements. Considering that
an element can be moved from its final position only to be placed there again later,
the number of redundant moves can slow down execution substantially.

To find the number of movements and comparisons performed by insertion-
sort (), observe first that the outer £or loop always performs n — 1 iterations. How-
ever, the number of elements greater than data[i] to be moved by one position is
not always the same.

The best case is when the data are already in order. Only one comparison is
made for each position i, so there are n — 1 comparisons, which is O(n), and 2(n — 1)
moves, all of them redundant.

The worst case is when the data are in reverse order. In this case, for each i, the
item data[i] is less than every item data [0], ..., data[i-1], and each of them
is moved by one position. For each iteration i of the outer £or loop, there are i com-
parisons, and the total number of comparisons for all iterations of this loop is

n-l n(n—1)

i=1+2+- +(n—1) =

0] 2
2 5 (n*)

The number of times the assignment in the inner for loop is executed can be
computed using the same formula. The number of times tmp is loaded and unloaded
in the outer for loop is added to that, resulting in the total number of moves:

n(n—1 2+ 3n—4
g_{_z(n_l):L:

5 5 O(n?)

Only extreme cases have been taken into consideration. What happens if the
data are in random order? Is the sorting time closer to the time of the best case, O(n),
or to the worst case, O(n?)? Or is it somewhere in between? The answer is not im-
mediately evident, and requires certain introductory computations. The outer for
loop always executes n — 1 times, but it is also necessary to determine the number of
iterations for the inner loop.

For every iteration i of the outer £or loop, the number of comparisons depends
on how far away the item data [1] is from its proper position in the currently sorted
subarray data [0 ... 1i-1].Ifit is already in this position, only one test is performed
that compares data [1] and data [i-1]. Ifit is one position away from its proper
place, two comparisons are performed: data [i] is compared with data[i-1] and
then with data [1-2]. Generally, if it is j positions away from its proper location,
data[i] is compared with j + 1 other elements. This means that, in iteration i of the
outer for loop, there are either 1, 2, . .., or i comparisons.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Section 9.1 Elementary Sorting Algorithms W 495

Under the assumption of equal probability of occupying array cells, the average
number of comparisons of data [i] with other elements during the iteration i of the
outer for loop can be computed by adding all the possible numbers of times such tests
are performed and dividing the sum by the number of such possibilities. The result is

12+ +i 5ili+1) i+1

i i 2

To obtain the average number of all comparisons, the computed figure has to be
added for all is (for all iterations of the outer for loop) from 1 to n — 1. The result is

i+1 1 T gn(n—1)

n—1
Z 2 2

n+n—2
4

(n—1) =

\
v
+
™M
ro |
|
[3S)

+
N | —

which is O(n?) and approximately one-half of the number of comparisons in the
worst case.

By similar reasoning, we can establish that, in iteration i of the outer for loop,
data[i] can be moved either 0, 1, ..., or i times; that is
(i+1) i

0+ 14 - +i
i i+1 2

times plus two unconditional movements (to tmp and from tmp). Hence, in all the
iterations of the outer for loop we have, on the average,

n—1 i ln—l n—1 %1’1(1’1 _ 1) 7’12 +7n — 8
—42)=i+ Do=———"+2(n-1)=——
O
movements, which is also O(n?).

This answers the question: is the number of movements and comparisons for
a randomly ordered array closer to the best or to the worst case? Unfortunately, it
is closer to the latter, which means that, on the average, when the size of an array is
doubled, the sorting effort quadruples.

9.1.2 Selection Sort

Selection sort is an attempt to localize the exchanges of array elements by finding a
misplaced element first and putting it in its final place. The element with the low-
est value is selected and exchanged with the element in the first position. Then, the

smallest value among the remaining elements data [1], ..., data [n-1] is found
and put in the second position. This selection and placement by finding, in each
pass i, the lowest value among the elements data[i], ..., data[n-1] and swap-

ping it with data [i] are continued until all elements are in their proper positions.
The following pseudocode reflects the simplicity of the algorithm:

selectionsort (datall,n)
for i = 0ton-2
select the smallest element among datal[il,..., datal[n-1];
swap it with datal[i];

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

496 M Chapter 9 Sorting

It is rather obvious that n-2 should be the last value for i, because if all elements
but the last have been already considered and placed in their proper positions, then
the nth element (occupying position n-1) has to be the largest. An example is shown
in Figure 9.2. Here is a C++ implementation of selection sort:

template<class T>
void selectionsort (T datal[], int n) {

for (int i = 0,j,least; i < n-1; i++) {
for (j = i+1, least = i; j < n; j++)
if (datal[j] < datalleastl])
least = j;

swap (data[least] ,datal[il) ;

FIGURE 9.2 The array [5 2 3 8 1] sorted by selection sort.

i 0 1 2 3 4
i 1, 2,3,4,5 23,45 3,45 4,5
least 00 4 1 2 34

015 1 1 1 1
1]2 2 ><| 2 2 2
213 3 3 >3 3
318 8 8 8 :><: 5
4 11 5 5 5 8

where the function swap () exchanges elements data[least] and data[i] (see
the end of Section 1.2). Note that 1east is not the smallest element but its position.
The analysis of the performance of the function selectionsort () is simpli-
tied by the presence of two for loops with lower and upper bounds. The outer loop
executes n — 1 times, and for each i between 0 and n — 2, the inner loop iterates j =
(n — 1) — i times. Because comparisons of keys are done in the inner loop, there are

nin—1) _

5 o(n?)

n—2
Sn—1—i)=(n—-1)+-- - +1=
i=0
comparisons. This number stays the same for all cases. There can be some savings only
in the number of swaps. Note that if the assignment in the i £ statement is executed,
only the index j is moved, not the item located currently at position j. Array elements
are swapped unconditionally in the outer loop as many times as this loop executes,
which is n-1. Thus, in all cases, items are moved the same number of times, 3(n—1).
The best thing about this sort is the required number of assignments, which
can hardly be beaten by any other algorithm. However, it might seem somewhat

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Section 9.1 Elementary Sorting Algorithms W 497

unsatisfactory that the total number of exchanges, 3(n—1), is the same for all cases.
Obviously, no exchange is needed if an item is in its final position. The algorithm
disregards that and swaps such an item with itself, making three redundant moves.
The problem can be alleviated by making swap () a conditional operation. The con-
dition preceding the swap () should indicate that no item less than data [least]

has been found among elements data [i+1], ..., data[n—1]. The last line of
selectionsort () might be replaced by the lines:

if (datali] != datalleast])
swap (datalleast], datalil);

This increases the number of array element comparisons by n—1, but this in-
crease can be avoided by noting that there is no need to compare items. We proceed
as we did in the case of the if statement of selectionsort () by comparing the
indexes and not the items. The last line of selectionsort () can be replaced by:

if (1 != least)
swap (datal[least], datalil);

Is such an improvement worth the price of introducing a new condition in the pro-
cedure and adding n—1 index comparisons as a consequence? It depends on what types
of elements are being sorted. If the elements are numbers or characters, then interpos-
ing a new condition to avoid execution of redundant swaps gains little in efficiency. But
if the elements in data are large compound entities such as arrays or structures, then
one swap (which requires three assignments) may take the same amount of time as,
say, 100 index comparisons, and using a conditional swap () is recommended.

9.1.3 Bubble Sort

A bubble sort can be best understood if the array to be sorted is envisaged as a verti-
cal column whose smallest elements are at the top and whose largest elements are at
the bottom. The array is scanned from the bottom up, and two adjacent elements are
interchanged if they are found to be out of order with respect to each other. First,
items data[n-1] and data[n-2] are compared and swapped if they are out of
order. Next, data [n-2] and data [n-3] are compared, and their order is changed
if necessary, and so on up to data [1] and data [0]. In this way, the smallest ele-
ment is bubbled up to the top of the array.

However, this is only the first pass through the array. The array is scanned again
comparing consecutive items and interchanging them when needed, but this time,
the last comparison is done for data[2] and data [1] because the smallest ele-
ment is already in its proper position, namely, position 0. The second pass bubbles
the second smallest element of the array up to the second position, position 1. The
procedure continues until the last pass when only one comparison, data [n-11 with
data [n-2], and possibly one interchange are performed.

A pseudocode of the algorithm is as follows:

bubblesort (datal],n)
for i = 0fon—2
for j = n-1downtoi+1
swap elements in positions j and j-1 if they are out of order;

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

498 M Chapter 9 Sorting

Figure 9.3 illustrates the changes performed in the integer array [5 2 3 8 1] during
the execution of bubblesort (). Here is an implementation of bubble sort:

template<class T>
void bubblesort (T datall, int n)
for (int 1 = 0; 1 < n-1; i++)
for (int j = n-1; j > i; --3)
if (datal[j] < datalj-11)
swap (data[j],datalj-11);

FIGURE 9.3 The array [5 2 3 8 1] sorted by bubble sort.

i 0 1 2 3 4
3 4 3 2 1 0432 143 2 43
0|5 5 5 5 1 1 1
| O | | | | | _><:_ | |
112 2 2 :><: 1 5 :><: 2 2
318 ><: 1 3 3 3 3 5
411 8 8 8 8 8 8

The number of comparisons is the same in each case (best, average, and worst)
and equals the total number of iterations of the inner £or loop

nin—1)

g(n—l—i)zTZO(nz)

comparisons. This formula also computes the number of swaps in the worst case
when the array is in reverse order. In this case, 3 ﬂnz—_ll moves have to be made.

The best case, when all elements are already ordered, requires no swaps. To find
the number of moves in the average case, note that if an i-cell array is in random
order, then the number of swaps can be any number between zero and i—1; that is,
there can be either no swap at all (all items are in ascending order), one swap, two
swaps, . . ., or i—1 swaps. The array processed by the inner for loop isdatal[il],...,
data [n-11], and the number of swaps in this subarray—if its elements are randomly
ordered—is either zero, one, two, . . ., or n—1—1. After averaging the sum of all these
possible numbers of swaps by the number of these possibilities, the average number
of swaps is obtained, which is

O+1+2+---+(mn—1—i) n—i—1
n—i 2

If all these averages for all the subarrays processed by bubblesort () are added (that
is, if such figures are summed over all iterations i of the outer for loop), the result is

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Section 9.1 Elementary Sorting Algorithms W 499

11’1—2 1?1—2
=—>>n—-1)—=>i
2150 2,-20

swaps, which is equal to %n(n— 1) moves.

The main disadvantage of bubble sort is that it painstakingly bubbles items step
by step up toward the top of the array. It looks at two adjacent array elements at a
time and swaps them if they are not in order. If an element has to be moved from the
bottom to the top, it is exchanged with every element in the array. It does not skip
them as selection sort did. In addition, the algorithm concentrates only on the item
that is being bubbled up. Therefore, all elements that distort the order are moved,
even those that are already in their final positions (see numbers 2 and 3 in Figure 9.3,
the situation analogous to that in insertion sort).

What is bubble sort’s performance in comparison to insertion and selection
sort? In the average case, bubble sort makes approximately twice as many compari-
sons and the same number of moves as insertion sort, as many comparisons as selec-
tion sort, and n times more moves than selection sort.

It could be said that insertion sort is twice as fast as bubble sort. In fact it is, but
this fact does not immediately follow from the performance estimates. The point is
that when determining a formula for the number of comparisons, only comparisons
of data items have been included. The actual implementation for each algorithm in-
volves more than just that. In bubblesort (), for example, there are two loops, both
of which compare indexes: i and n—1 in the first loop, j and i in the second. All in
all, there are M”Z—_ll such comparisons, and this number should not be treated too
lightly. It becomes negligible if the data items are large structures. But if data con-
sists of integers, then comparing the data takes a similar amount of time as compar-
ing indexes. A more thorough treatment of the problem of efficiency should focus on
more than just data comparison and exchange. It should also include the overhead
necessary for implementation of the algorithm.

An apparent improvement of bubble sort is obtained by adding a flag to discon-
tinue processing after a pass in which no swap was performed:

template<class T>
void bubblesort2 (T datal[], const int n) {
bool again = true;
for (int i = 0; i < n-1 && again; i++)
for (int j = n-1, again = false; j > i; --3)
if (dataljl < datalj-11) {
swap (data[j],datalj-1]1);
again = true;

}

The improvement, however, is insignificant because in the worst case the im-
proved bubble sort behaves just as the original one. The worst case for the number

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

300

Chapter 9 Sorting

of comparisons is when the largest element is at the very beginning of data before
sorting starts because this element can be moved only by one position in each
pass. There are (n — 1)! such worst cases in an array in which all elements are
different. The cases, when the second largest element is at the beginning or the
largest element is in the second position, and there are also (n — 1)! such cases,
are just as bad (only one fewer pass would be needed than in the worst case). The
cases when the third largest element is in the first position are not far behind, etc.
Therefore, very seldom the flag again fulfills its duty and very often — because
an additional variable has to be maintained by bubblesort2 () - the improved
version is even slower than bubblesort (). Therefore, by itself, bubblesort2 ()
is not an interesting modification of bubble sort. But comb sort, which builds on
bubblesort2 (), certainly is.

