CURRICULUM PLAN 2021-22 (Even Semesters: II, IV VI) Dr. Ranjana Roy Mishra

Semester – IV (Semester System)

B. Sc. (H) Botany Semester IV cbcs

Dr. Ranjana Roy Mishra

Name of Paper & Code	Allocation of Lectures	Month wise schedule followed by the Department	Presentation etc.	Suggested Readings				
Theory Paper Core course VIII Molecular Biolo	Theory Paper Core course VIII Molecular Biology							
Unit 1 Nucleic acids as carriers of genetic information (3 lectures) Historical perspective; Experiments that established nucleic acids (DNA & RNA) a the carrier of genetic information Griffith's,Hershey & Chase, Avery, McLeo & McCarty and Fraenkel-Conrat experiment	as n:	January- February 2022		Suggested Readings Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin				
•				Cummings, CSHL				
Unit 2. The Structureand organisation of the genetic material (09 lectures) DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure Salient features of double helix, Types of DNA, Types of genetic material, denaturation and renaturation, cot curves; Organization of DNA- Prokaryotes, Viruses, Eukaryotes.RN Structure_Organelle DNA mitochondria and chloroplast DNA. The Nucleoson Chromatin structure- Euchromati Heterochromatin- Constitutive and Facultative heterochromatin.	nd e, of on of A nd ne n,			Press, New York, U.S.A. 6th edition. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., . 5th edition. K lug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics.				
Unit 3 : Central Dogma and Genetic Code 3 lectures Key experiments establishing-The Central Dogma,Genetic code (salient features & experiments that deciphered the correlation between mRNA codon and amino acid).	03			Benjamin Cummings. U.S.A. 9th edition. Russell, P. J. (20 10). Genetics- A Molecular Approach.				
Unit 4 The Replication of DNA 9 lectures Mechanism - initiation, elongation ar termination, Kornberg's discovery; Enzymes ar other proteins involved in DNA replication General principles – bidirectiona semiconservative and semi discontinuou replication (Replisome), RNA priming (primas	nd n; al, us			Benjamin Cummings, U.S.A. 3rd edition. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis.				

& Primosome); Various modes of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear ds- DNA. Replication of the 5'end of linear chromosome (end replication problem & Telomerase).				W. H. Freeman and Co., U.S.A. 10th edition.
TT 14 /		•	tation by students	
Unit 5 Machanism of Transportation O lastures	09	2022		
Mechanism of Transcription 9 lectures Transcription in prokaryotes and				
,				
eukaryotes ; Understanding the steps in process of transcription: Initiation,				
process of transcription: Initiation, Elongation and Termination. Enzymes and				
factors involved in transcription.				
Unit 6				
Processing and modification of RNA 7 lectures	07			
Split genes-concept of introns and exons,				
Splicing pathways, group I & group II intron				
splicing, Spliceosome and assembly of the				
spliceosome machinery, Alternative splicing,				
Eukaryotic mRNAprocessing (5' cap, 3' poly A				
tail); Ribozymes, RNA Editing				
Unit 7	10			
Mechanism of Translation 10 lectures	10			
Translationin prokaryotes and eukaryotes ;				
Understand the steps in process of				
translation - Initiation, Elongation and				
Termination. Enzymes and factors involved in translation. Ribosome structure and				
assembly (in prokaryotes and				
eukaryotes);charging of tRNA, aminoacyl tRNA synthetases; Fidelity of translation;				
Inhibitors of protein synthesis; Post-				
translational modifications of proteins.				
	10			
Unit 8		March 2022		
Gene Regulation in prokaryotes and				
eukaryotes 10 lectures				
Basic principles of transcriptional regulation:				
Positive & negative; Inducible & Repressible;				
Activators and Repressors ; Prokaryotes: Operon				

	T1
concept & regulation of lactose metabolism	
(positive and Negative) and tryptophan synthesis	
(Repression-Derepression and Attenuation) in	
<i>E.coli;</i> Eukaryotes: Gene silencing: Methylation,	
RNAi, Imprinting.	
Practicals	
Practicals	
1. Preparation of LB medium and raising <i>E. coli</i>	January 2022
2. DNA isolation from cauliflower heads	January 2022
	January 2022
3. Quantification of unknown DNA by diphenylamine reagent.	January 2022
4. Study of experiments establishing nucleic acid as genetic material (Avery et al, Griffith's, Hershey	February 2022
& Chase's and Fraenkel & Conrat's experiments)through photographs	
5. Numericals based on DNA re-association kinetics (melting profiles and <i>Cot</i> curves)	February 2022
6. Study of DNA replication through photographs: Modes of replication - Rolling circle, Theta and	
semi-discontinuous; Semiconservative model of replication (Messelson and Stahl's experiment);	March 2022
Telomerase assisted end-replication of linear DNA	
7. Study of structures of : tRNA (2D and 3D); prokaryotic RNA polymerase and eukaryotic RNA	March 2022
polymerase II through photographs	
8. Study of the following through photographs: Assembly of Spliceosome machinery; Splicing	March 2022
mechanism in group I & group II introns; Ribozymes and Alternative splicing	
9. Understanding the regulation of lactose (<i>lac</i>) operon (positive & negative regulation) and	
tryptophan (<i>trp</i>) operon (Repression and De-repression & Attenuation) through photographs.	April 2022
10. Understanding the mechanism of RNAi by photographs.	
10. Onderstanding the mechanism of KINAI by photographs.	

Semester-VI (semester system) B. Sc. Prog. (Life Science) GE Paper: Economic Botany and Biotechnology

PRACTICALS: Economic Botany and Biotechnology			
 tests 2. Familiarization with basic equipments in tissue culture. 3. Study through photographs: Anther culture, somatic embryogenesis, endosperm and embryo culture; micropropagation. 4. Study of molecular techniques: PCR, Blotting techniques, AGE and PAGE. 	February 2022 February – March		

Semester – II (Semester System) B.Sc. Prog. Life Science Core Paper : Plant Ecology & Taxonomy

PRACTICALS: Plant Ecology and Taxonomy				
1.	Study of instruments used to measure microclimatic variables: Soil thermometer, maximum and minimum thermometer, anemometer, psychrometer, hygrometer, rain gauge and lux meter.	April 2022 April- May2022		
2.	Determination of pH, and analysis of two soil samples for carbonates, chlorides,	April- May2022		
	nitrates, sulphates, organic matter and base deficiency by rapid field test.			
	(a) Study of morphological adaptations of hydrophytes and xerophytes four each).	May 2022		
1.	(b)Study of biotic interactions of the following: Stem parasite (<i>Cuscuta</i>), Root parasite (<i>Orobanche</i>), Epiphytes, Predation (Insectivorous plants)			
2.	Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus by species area curve method. (species to be listed)			
3.	Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer's frequency distribution law			
4.	Study of vegetative and floral characters of the following families (Description, V.S. flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification):Brassicaceae - <i>Brassica,Alyssum / Iberis</i> ; Asteraceae - <i>Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax</i> ; Solanaceae - <i>Solanumnigrum, Withania</i> ; Lamiaceae - <i>Salvia, Ocimum</i> ; Liliaceae - <i>Asphodelus / Lilium / Allium</i> .	May-June 2022		
5.	Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted on the herbarium sheet with appropriate label.)	July 2022		