B.Sc(H) Computer Science 3rd Sem Numerical Optimization Guidelines

Unit	Content with chapters & page nos.	Referenc	Duration
		e	
1	Chapter1+ Solution by graphical	[1]	13 Hrs
	method		
	Simplex Method with all special	[3]	
	cases chapter 5 till 5.6		
2	2.1 without proof of theorems	[1]	12 Hrs
	9.1-9.6	[2]	
3	9.7 till pg 350	[2]	6 Hrs
4	8.1	[1]	6 Hrs
5	12.1 till pg 313 + Langrangian	[1]	8 Hrs
	Method Numerical Approach		

Note: Proof of all theorems and Lemmas can be skipped

Essential/recommended readings

- J. Nocedal and S.J. Wright, *Numerical Optimization*, 2nd edition, Springer Series inOperations Research, 2006.
- 2. A, Mehra, S Chandra, Jayadeva, *Numerical Optimization with Applications*, NarosaPublishing House, New Delhi, 2009,
- 3. J. Matousek and Bernd Gartner, *Understanding and using Linear programming*, Springer

Practicals must be done in Python

Practical list

- 1. WAP for finding optimal solution using Line Search method.
- 2. WAP to solve a LPP graphically.
- 3. WAP to compute the gradient and Hessian of the function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

4. WAP to find Global Optimal Solution of a function

 $f(x) = -10Cos(\pi x - 2.2) + (x + 1.5)x$ algebraically

- 5. WAP to find Global Optimal Solution of a function $f(x) = -10Cos(\pi x - 2.2) + (x + 1.5)x$ graphically
- 6. WAP to solve constraint optimization problem.