## Curriculum Plan: B.Sc. (Hons) Mathematics (Semester III)- Discrete Mathematics (Including Practical) 2024-25 Odd Sem

| Anjali Assistant Professor       |                                                                                                                                                      | Marks<br>Distribution | <b>Theory</b> - 90      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| Department of Mathematics        |                                                                                                                                                      |                       | Internal Assessment- 30 |
| Kalindi College                  |                                                                                                                                                      |                       | Practical - 40          |
| University of Delhi              |                                                                                                                                                      |                       |                         |
| Delhi- 110008                    |                                                                                                                                                      |                       |                         |
| Mobile: 8708175676               |                                                                                                                                                      | Classes               | Lectures: 1 per week    |
| E- mail: anjali@kalindi.du.ac.in |                                                                                                                                                      | Assigned              |                         |
| References                       | 1. Davey, B. A., & Priestley, H. A. (2002). Introduction to Lattices and Order (2nd ed.).                                                            |                       |                         |
|                                  | Cambridge University press, Cambridge.                                                                                                               |                       |                         |
|                                  | 2. Goodaire, Edgar G., & Parmenter, Michael M. (2006). Discrete Mathematics with Graph Theory (3rd ed.). Pearson Education Pvt. Ltd. Indian Reprint. |                       |                         |
|                                  |                                                                                                                                                      |                       |                         |
|                                  | 3. Lidl, Rudolf & Pilz, Gunter. (2004). Applied Abstract Algebra (2nd ed.), Undergraduate                                                            |                       |                         |
|                                  | Texts in Mathematics. Springer (SIE). Indian Reprint                                                                                                 |                       |                         |
| Week                             | Topics                                                                                                                                               |                       |                         |
| 1 <sup>st</sup> week             | Switching circuits.                                                                                                                                  |                       |                         |
| 2 <sup>nd</sup> week             | Integrability Switching circuits and applications                                                                                                    |                       |                         |
| 3 <sup>rd</sup> week             | Algebras to logic gates and a Boolean table of logic gates.                                                                                          |                       |                         |
| 4 <sup>th</sup> week             | Representation theorem, Boolean algebras, and their examples.                                                                                        |                       |                         |
| 5 <sup>th</sup> week             | Boolean polynomials, Equivalence of Boolean polynomials.                                                                                             |                       |                         |
| 6 <sup>th</sup> week             | De Morgan's laws, Boolean homomorphism.                                                                                                              |                       |                         |
| 7 <sup>th</sup> week             | Boolean polynomial functions and its examples.                                                                                                       |                       |                         |
| 8 <sup>th</sup> week             | Disjunctive normal form and conjunctive normal form of Boolean polynomials                                                                           |                       |                         |
| 9 <sup>th</sup> week             | Minimal forms of Boolean polynomials.                                                                                                                |                       |                         |
| 10 <sup>th</sup> week            | Quine-McCluskey method.                                                                                                                              |                       |                         |
| 11 <sup>th</sup> week            | Karnaugh diagrams.                                                                                                                                   |                       |                         |
| 12 <sup>th</sup> week            | Set theory                                                                                                                                           |                       |                         |
| 13 <sup>th</sup> week            | Probability theory.                                                                                                                                  |                       |                         |
| 14 <sup>th</sup> week            | Class Test and Assignment.                                                                                                                           |                       |                         |
| 15 <sup>th</sup> week            | Revision and Assignment problem.                                                                                                                     |                       |                         |
|                                  |                                                                                                                                                      |                       |                         |