Curriculum Plan (Even Sem 2021-2022): B.Sc. Physical Sciences (Semester VI) DSE-ii Probability Theory and Statistics

Mr. Hari	Kishan Bhardwaj		Marks	Theory	75 Marks	
Assistant Professor			Distribution	Internal Assessment	25 Marks	
•		to Mathematical Sta 2. Miller, Irwin, & I Statistics with Appli Dorling Kindersley.	Classes Assigned IcKean, Jose tistics (7th e Miller, Maryl ications (8th	Lecture eph W., & Craig, Aller ed.), Pearson Education lees (2014). John E. ed.). Pearson Educa	3 per week n T. (2013). Introduction on, Inc. Freund's: Mathematical tion Ltd. Indian Reprint.	
	Week	3. Ross, Sheldon M Elsevier Inc.	M. (2014). I	ntroduction to Prob	pability Models (11th ed.).	
	1st week	Sample space, Probability set function and examples				
	Jan 1- 8, 2022	Sample space, Frobabili	ty set fuffction	and examples		
	2nd week Jan 10- 15, 2022	Expectation of random variables, and some special expectations:				
	3rd week Jan 17-22, 2022	Mean, Variance, Standa	rd deviation, M	Ioments and moment ge	nerating function	
	4th week Jan 24-29, 2022	Characteristic function.	The discrete d	istributions: Uniform		
	5th week Jan 31-Feb 05, 2022	Bernoulli, Binomial, Neg			1.	
	6th week Feb 7-12, 2022	The continuous distribu	tions: Uniform			
Ĺ	1					

7th week Feb 14- 19, 2022	Gamma, and Exponential			
8 th week Feb 21-26, 2022	Normal distribution, and normal approximation to the binomial distribution.			
9th week Feb 28- Mar 05, 2022	Correlation coefficient, Covariance,			
10th week Mar 7-12, 2022	Calculation of covariance from joint moment generating function, Independent random variables			
11th week Mar 21-26, 2022	Linear regression for two variables, and the method of least squares			
12 th week Mar 28-Apr 02, 2022	Chebyshev's theorem			
13th week Apr 4-9, 2022	Statement and interpretation of the strong law of large numbers			
14 th week Apr 11-16, 2022	Central limit theorem			
15 th week Apr 18- 23, 2022	Weak law of large numbers			
16 th week Apr 25- 27, 2022	Revision			
Ι	Dispersal of classes, preparation leave and practical examination begin April 28, 2022.			