Additional Readings:

- i. Murray, J. D. (2002). An Introduction to Mathematical Biology (3rd ed.). Springer.
- ii. Myint-U, Tyn (1977). Ordinary Differential Equations. Elsevier North-Holland, Inc.
- iii. Simmons, George F., & Krantz, Steven G. (2015). *Differential Equations*. McGraw-Hill Education. Indian Reprint.
- iv. Strogatz, Steven H. (2009). *Nonlinear Dynamics and Chaos* (2nd ed.). Perseus Book Publishing. LLC. Sarat Publication, Kolkata, India.

Teaching Plan (DSE-3 (iii): Biomathematics):

- Week 1: Population growth, Administration of drugs, Cell division, Systems of linear ordinary differential equations.
 - [2] Chapter 1 (Sections 1.1 to 1.3) and Chapter 3 (An overview of the methods in Sections 3.1 to 3.6).
- Week 2: Heartbeat, Nerve impulse transmission.
 - [2] Chapter 4 (Sections 4.2, and 4.3).
- Week 3: Chemical reactions, Predator-prey models, Epidemics (mathematical model).
 - [2] Chapter 4 (Sections 4.4 and 4.5) and Chapter 5 (Section 5.2)
- Week 4: The phase plane and Jacobian matrix, Local stability.
 - [2] Chapter 5 (Sections 5.3 and 5.4).
- Week 5: Stability, Limit cycles.
 - [2] Chapter 5 [Sections 5.5, and 5.6 (up to Page number 137)].
- **Week 6:** Limit cycle criterion and Poincaré—Bendixson Theorem (interpretation only, with Example 5.6.1), Forced oscillations.
 - [2] Chapter 5 [Section 5.6 (Page number 137 to 138) and Section 5.7).
- Week 7: Mathematics of heart physiology: local model, threshold effect, phase plane analysis and heartbeat model.
 - [2] Chapter 6 (Sections 6.1 to 6.3).
- Week 8: A model of the cardiac pacemaker, Excitability and repetitive firing.
 - [2] Chapter 6 (Section 6.5) and Chapter 7 (Section 7.1).
- Week 9: Travelling waves, Bifurcation, Bifurcation of a limit cycle.
 - [2] Chapter 7 (Section 7.2), and Chapter 13 (Sections 13.1 and 13.2).
- Weeks 10 and 11: Discrete bifurcation and period-doubling, Chaos, Stability of limit cycles, Poincaré plane.
 - [2] Chapter 13 (Sections 13.3 to 13.6).
- **Week 12:** Matrix models of base substitutions for DNA sequences, Jukes-Cantor model, Kimura models, Phylogenetic distances.
 - [1] Chapter 4 (Sections 4.4 and 4.5).
- Week 13: Constructing phylogenetic trees: phylogenetic trees, unweighted pair-group method with arithmetic means (UPGMA), Neighbor joining method.
 - [1] Chapter 5 (Sections 5.1 to 5.3).
- Week 14: Genetics: Mendelian genetics, probability distributions in genetics.
 - [1] Chapter 6 [Sections 6.1 and 6.2 (up to Equation 6.2 only)].

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes	Teaching and Learning Activity	Assessment
No.			Tasks
1.	Learn the development, analysis	(i) Each topic to be explained with	• Student
	and interpretation of bio	examples.	presentations.
	mathematical models such as	(ii) Students to be involved in	•

Department of Mathematics, University of Delhi

	population growth, cell division, and predator-prey models.	discussions and encouraged to ask questions.	Participation in discussions.
2.	Learn about the mathematics behind heartbeat model and nerve impulse transmission model.	(iii) Students to be given homework/assignments. (iv) Students to be encouraged to	Assignments and class tests.Mid-term
3.	Appreciate the theory of bifurcation and chaos.	give short presentations.	examinations. • End-term
4.	Learn to apply the basic concepts of probability to molecular evolution and genetics.		examinations.

Keywords: Bifurcation and chaos, Forced oscillations, Jukes–Cantor model, Kimura model, Limit cycles, Phase plane, Phylogenetic distances, Stability, UPGMA.