Curriculum Plan (EVEN SEM 2025): B.Sc. (H) Mathematics III Year (Semester VI) Paper: DSC-Complex Analysis

Dr. Tajender Kumar			Marks Distribution	Theory	90 Marks		
Assistant Professor Department of Mathematics Kalindi College (University of Delhi)			Distribution	Practical	40 Marks		
				Internal Assessment	Assignments	12 Marks	
Delhi- 110008 Mobile: +91 7417837644					Home Exams/	12 Marks	
E- mail:					Class Test		
					Attendance	6 Marks	
			Classes Assigned	Lectures	3 per week (Theory)	
			8	Lab	2 per week		
References		 Brown, James Ward, & Churchill, Ruel V. (2014). Complex Variables and Applications (9th ed.). McGraw-Hill Education. New York. 					
	Beginning/1 st week	Topics Make a geometric plot to show that the n^{th} roots of unity are equally spaced points that lie on the unit circle $C_1(0) = \{z: z = 1\}$ and form the vertices of a regular polygon with n sides, for $n = 4, 5, 6, 7, 8.$					
	with 3 days						
	02 nd Jan 11 th Jan.						
	2 nd week	Find all the solutions of the equation $z^3 = 8i$ and represent these geometrically.					
	13 th Jan. – 18 th Jan						

3 rd week	Write parametric equations and make a parametric plot for an ellipse centered at the origin with	
20 th Jan. – 25 th Jan.	this ellipse by an angle of $\frac{\pi}{2}$ radians and shifting of the centre from (0.0) to (2.1), by making a	
	parametric plot.	
4 th week	Show that the image of the open disk $D_1(-1-i) = \{z: z+1+i < 1\}$ under the linear transformation $w = f(z) = (3-4i) + 6 + 2i$ is the open disk:	
27 th Jan. – 01 st Feb.	$ = \int (2 - 4i) + 0 + 2i $ is the open disk. $ = \int (2 - 4i) + 0 + 2i $	
	$D_5(-1+3\iota) = \{w: w+1-3\iota < 5\}.$	
5 th week	Show that the image of the right half plane $Re(z) = x > 1$ under the linear transformation $w =$	
03 rd Feb 08 th Feb.	f(z) = (-1+i) - 2 + 3i is the half plane $v > u + 7$, where $u = Re(w)$ etc. Plot the map.	
6 th week	Show that the image of the right half plane $A = \{z: Re(z) \ge 1\}$ under the mapping $w = f(z) = 1$	
10^{th} Feb. – 15^{th} Feb.	$\frac{1}{z}$ is the closed disk:	
	$\overline{D_1(1)} = \{w: w-1 \le 1\}$ in the w- plane.	
7 th week	Make a plot of the vertical lines $x = a$, for $a = -1, -\frac{1}{2}, \frac{1}{2}, 1$ and the horizontal lines $y = b$, for	
17 th Feb. – 22 nd Feb.	b= $-1, -\frac{1}{2}, \frac{1}{2}, 1$. Find the plot of this grid under the mapping $w = f(z) = \frac{1}{z}$.	
8 th week	Find a parametrization of the polygonal path $C = C_1 + C_2 + C_2$ from $-1 + i$ to $3 - i$, where	
	C_1 is the line from: $-1 + i$ to -1 , C_2 is the line from: -1 to $1 + i$ and C_3 is the line from $1 + i$	
24^{un} Feb. -01^{st} Mar.	to $3 - i$. Make a plot of this path.	
9 th week	Plot the line segment 'L' joining the point $A = 0$ to $B = 2 + \frac{\pi}{4}i$ and give an exact calculation of	
03 rd Mar.– 08 th Mar.	$\int_C e^z dz.$	

	10 th week	Evaluate $\int_C \frac{1}{(z-2)} dz$, where C is the upper semicircle with radius 1 centered at $z = 2$				
	17 th March. – 22 th Mar.	oriented in a positive direction.				
	11 th week	Show that $\int_{C_1} z dz = \int_{C_2} z dz = 4 + 2i$ where C_1 is the line segment from $-1 - i$ to $3 + i$ and				
	24^{th} Mar. – 29^{th} Mar.	C_2 is the portion of the parabola $x = y^2 + 2y$ joining $-1 - i$ to $3 + i$. Make plots of two contours C_1 and C_2 joining $-1 - i$ to $3 + i$.				
	12 th week	Use ML inequality to show that $\left \int_{C} \frac{1}{z^{2}+1} dz\right \le \frac{1}{2\sqrt{5}}$ where C is the straight line segment from 2				
	31 st Mar. – 05 th Apr.	to 2+ <i>i</i> . While solving, represent the distance from the point <i>z</i> to the points <i>i</i> and $-i$, respectively, i.e., $ z - i $ and $ z + i $ on the complex plane \mathbb{C}				
		respectively, i.e. $ z - i $ and $ z + i $ on the complex plane \mathbb{C} .				
	13 th week	Find and plot three different Laurent series representations for the function $f(z) = \frac{3}{2+z-z^2}$,				
	07^{th} Apr. – 12^{th} Apr.	involving powers of z.				
	14 th week	Locate the poles of $f(z) = \frac{1}{5z^4 + 26z^2 + 5}$ and specify their order, and				
	14 th Apr. – 19 th Apr.	Locate the zeros and poles of $g(z) = \frac{\pi \cot (\pi z)}{z^2}$ and determine their order. Also justify that				
		$\operatorname{Res}(g,0) = -\frac{\pi^2}{3}$				
	15 th week with 2	Evaluate $\int_{C_1^+(0)} exp(\frac{2}{z}) dz$, where $C_1^+(0)$ denotes the circle $\{z: z = 1\}$. with positive				
	Days	orientation. Similarly evaluate $\int_{a^{+}(a)} \frac{1}{dz} dz$.				
	21^{st} Apr. – 29^{th} Apr.	$C_1(0) z^4 + z^3 - 2z^2$				
Dispersal of classes, preparation leave and practical examination begin- 30 April, 2025.						