Guidelines
B.Sc. (H) Computer Science DSC-03
(Mathematics for Computing)

S. No	Topic	Reference	
	Table of Content	Book	
1	Unit 1- Introduction to Matrix Algebra: Echelon form of a Matrix, Rank of a Matrix, Determinant and Inverse of a matrix, Solution of Systemof Homogeneous \& Non- HomogeneousEquations: Gauss elimination and Gauss Jordan Method.	Ch-7: excluding Cramer's rule and section 7.9	$[1]$
2	Unit 2 - Vector Space, Sub- spaces, Linear Combinations, Linear Span, Linear Dimension, Linear transformation on finite dimensional vector spaces, Inner Product Space, Schwarz Inequality, Orthonormal Basis, Gram-Schmidt Orthogonalization Process, Convex Sets	Ch-4: 4.1, 4.2, 4.3, 4.5,4.6 Ch-6: 6.1, 6.2, 6.4, 6.7-upto Theorem 17 Ch-8: 8.3 upto Theorem 7	$[2]$
3	Unit 3 - EigenValue and EigenVector: Characteristic Polynomial, Cayley Hamilton Theorem (Only in numericals), Eigen Value And eigen vector of a matrix, eigenspaces, Diagonalization	Ch-5: 5.1-5.3	$[2]$
	Positive Definite Matrices, Applications to Markov Matrices	$[1]$	
4	Unit 4 - Vector Calculus: Vector Algebra, Laws of Vector Algebra, Dot Product, Cross Product, Vector and Scalar Fields, Ordinary Derivative of Vectors, Space Curves, Partial Derivatives, Del Operator, Gradient of a Scalar Field, Directional Derivative, Gradient of Matrices, Divergence of a Vector Field, Laplacian Operator, Curlof a Vector Field.	Ch-9: 9.1-9.4, 9.7-9.9	Ch-7: 7.2 page 407-408 Ch-4: 4.9

Note: Proofs of theorems to be skipped. Applications/problems pertaining to the theorems must be discussed in the class.

References:

1. Kreyszig Erwin, "Advanced Engineering Mathematics", $10^{\text {th }}$ Edition, Wiley, 2015.
2. David C. Lay, Steven R. Lay and Judi J. McDonald, "Linear Algebra and its applications", $5^{\text {th }}$ edition, Pearson.

Additional References:

1. Strang Gilbert, "Introduction to Linear Algebra", $5^{\text {th }}$ Edition, Wellesley-Cambridge Press, 2021.
2. Stephen Andrilli and David Hecker, "Elementary Linear Algebra", Fourth Edition, Academic Press, 2010, ISBN: 978-0-12-374751-8

* Deisenroth, Marc Peter, Faisal A. Aldo and Ong Chengsoonm "Mathematics for Machine Learning, $1^{\text {st }}$ Edition, Cambridge University Press, 2020

List of Practicals:

1. Find cofactors, determinant, adjoint and inverse of a matrix.
2. Convert the matrix into echelon form and find its rank.
3. Solve a system of equations using Gauss elimination method.
4. Solve a system of equations using the Gauss Jordan method.
5. Verify the linear dependence of vectors. Generate a linear combination of given vectors of $\mathrm{Rn} /$ matrices of the same size.
6. Check the diagonalizable property of matrices and find the corresponding eigenvalue and verify the CayleyHamilton theorem.
7. Compute Gradient of a scalar field, Divergence and Curl of a vector field.
