CURRICULUM PLAN 2024-2025

Even Semester: V, III, I Dr. Rashmi Menon Dept. of Physics

B.Sc.(PS)-IIIrd year

DSC 6: Solid State Physics -30 Periods Crystal Structure: Solids: amorphous and crystalline materials, lattice translation vectors, lattice with a basis, unit cell, types of lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Name of Paper and Code	Allocation of	Month-wise Schedule
Crystal Structure: Solids: amorphous and crystalline materials, lattice translation vectors, lattice with a basis, unit cell, types of lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Tvaine of 1 aper and code		
Crystal Structure: Solids: amorphous and crystalline materials, lattice translation vectors, lattice with a basis, unit cell, types of lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	DSC 6. Solid State Physics 20 Pariods	Lectures	Tonowed by the department
Solids: amorphous and crystalline materials, lattice translation vectors, lattice with a basis, unit cell, types of lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and		10	9 Ion to 7 Eab
materials, lattice translation vectors, lattice with a basis, unit cell, types of lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and		10	8-Jan to /-Feb
lattice with a basis, unit cell, types of lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	1		
lattices, Miller indices, reciprocal lattice, Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	,		
Ewald's construction (geometrical approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	7 =		
approach), Brillouin zones, diffraction of X-rays by crystals. Bragg's law Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	_		
Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	\mathcal{E}		
Elementary Lattice Dynamics: Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and			
Lattice vibrations and phonons: linear monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and			
monoatomic and diatomic chains, acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and		6	4-Feb to 28-Feb
acoustical and optical phonons, Dulong and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	-		
and Petit's law, qualitative discussion of Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	, ·		
Einstein and Debye theories, T3 law. Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	_ = = =		
Elementary Band Theory: Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	and Petit's law, qualitative discussion of		
Qualitative understanding of Kronig and Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Einstein and Debye theories, T3 law.		
Penny model (without derivation) and formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia- and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Elementary Band Theory:	5	5-March to 25-March
formation of bands in solids, concept of effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Qualitative understanding of Kronig and		
effective mass, Hall effect in semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Penny model (without derivation) and		
semiconductor, Hall coefficient, application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: 6 28-March to 22-April dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	formation of bands in solids, concept of		
application of Hall Effect, basic introduction to superconductivity Magnetic Properties of Matter: 6 28-March to 22-April dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	effective mass, Hall effect in		
introduction to superconductivity Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	semiconductor, Hall coefficient,		
Magnetic Properties of Matter: dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	application of Hall Effect, basic		
dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	introduction to superconductivity		
dia-, para-, and ferro- magnetic materials, classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	Magnetic Properties of Matter:	6	28-March to 22-April
classical Langevin theory of dia— and paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and	ē .		
paramagnetism (no quantum mechanical treatment), qualitative discussion about Weiss's theory of ferromagnetism and			
treatment), qualitative discussion about Weiss's theory of ferromagnetism and	_ ·		
	treatment), qualitative discussion about		
	Weiss's theory of ferromagnetism and		
· · · · · · · · · · · · · · · · · · ·	formation of ferromagnetic domains, B-H		
curve hysteresis and energy loss	curve hysteresis and energy loss		
Dielectric Properties of Materials: 3 25-April to 2-May		3	25-April to 2-May
Polarization, local electric field in solids,	_		
electric susceptibility, polarizability,			
Clausius Mossoti equation, qualitative	1		
discussion about ferroelectricity and PE			
hysteresis loop	1		