CURRICULAM PLAN OF Ms. VARSHA

FOR ODD SEMESTER 2023-24

B.Sc (H) DSC -2nd YEAR

PAPER-Mathematical Physics-III (3 PERIODS/WEEK)

LEARNING OBJECTIVES

The emphasis of course is on applications in solving problems of interest to physicists. The course will also expose students to fundamental computational physics skills enabling them to solve a wide range of physics problems. The skills developed during course will prepare them not only for doing fundamental and applied research but also for a wide variety of careers.

LEARNING OUTCOMES

After completing this course, student will be able to,

• Determine continuity, differentiability and analyticity of a complex function, find the derivative of a function and understand the properties of elementary complex functions.

• Work with multi-valued functions (logarithmic, complex power, inverse trigonometric function) and determine branches of these functions.

• Evaluate a contour integral using parameterization, fundamental theorem of calculus and Cauchy"s integral formula.

• Find the Taylor series of a function and determine its radius of convergence.

• Determine the Laurent series expansion of a function in different regions, find the residues and use the residue theory to evaluate a contour integral and real integral.

- Understand the properties of Fourier transforms and use these to solve boundary value problems.
- Solve linear partial differential equations of second order with separation of variable method.

CONTENTS	ALLOCATIO	MONTH	TUTORIAL/ASSIGNMENT/PRESENTATIO
	N OF	WISE	N ETC
	LECTURES	SCHEDULE	
		FOLLOWE	
		D	
Unit – II	10 Lectures	18 th August-	Syllabus Overview
Fourier		30 th August	Reference books
Transform:			Building concepts
Fourier Integral		1 st	
theorem		September –	Problem solving Derivations and Numericals
(Statement		30 th	-
only), Fourier		September	
		-	

Transform (FT)			
and			
Inverse FT,			
existence of FT,			
FT of single			
pulse, finite			
sine train,			
trigonometric,			
exponential,			
Gaussian			
functions,			
properties of			
FT, FT of Dirac			
delta function,			
sine and cosine			
function,			
convolution			
theorem.			
Fourier Sine			
Transform			
(FST) and			
Fourier Cosine			
Transform			
(FCT),			
Solution of one			
dimensional			
Wave Equation			
using FT. Unit			
– III Partial			
Differential			
Equations:			
Solutions to			
partial			
differential			
equations (2 or			
3 independent	8 Lectures		
variables) using			
separation of			
variables:			
Laplace's			
Equation in			
problems of			
rectangular			
geometry.			
Solution of			
wave equation			
for vibrational			
modes of a			
stretched string.			
	2 Lectures	1 st week of	Related Problems and assignments
Solution of		October- 4 th	Student's difficulties

	ſ	1 0	
1D heat flow		week of	
equation.		October	
(Wave/Heat			
equation not to			
be derived).			
Unit – I			
Complex			
Analysis: The			
field of			
complex			
numbers.			
Graphical,			
Cartesian and			
polar			
representation.			
Algebra in the			
complex plane.			
Triangle			
inequality.			
Roots of			
complex			
numbers.			
Regions in the			
complex plane			
– idea of open			
sets, closed			
sets, connected			
sets, bounded			
sets, bounded			
domain.			
	(I acturned		Derivations and Numericals Class test on unit
1	6 Lectures		
functions and		1 St NT 1	end Discussion of Important questions Home
mappings.		1 st November	Register Checking
Limits of		- 30 th	
complex		November	Class Test Revision Session
functions.			Assignment given for IA
Extended			Home exam paper discussion
complex plane			
and limits			
involving the			
point at infinity.			
Continuity and			
differentiability			
of a complex			
function,			
Cauchy-			
Riemann			
equations in			
Cartesian and			
polar			
coordinates,			
coordination,	l		

sufficient			
conditions			
for			
differentiability			
, harmonic			
functions.			
Analytic			
functions,			
singular points.			
Elementary			
functions.			
Multi-			
functions,			
branch cuts and			
branch points.			
Integration in			
complex plane:			
contours and			
contour and			
integrals,			
Cauchy-			
Goursat			
Theorem (No			
proof) for			
simply and			
multiply			
connected			
domains.			
Cauchy's			
Inequality.			
Cauchy's			
Integral			
formula.			
Taylor"s and			
Laurent"s			
theorems			
(statements			
only), types of			
singularities,			
meromorphic			
functions,			
residues and			
Cauchy"s			
residue			
theorem, and			
application of			
contour			
integration in			
solving real			
integrals.			

Application of	1 Lecture	1 st week of	Discussion of last year papers and clarification
contour		December	of doubts
integration in			Revision of Syllabus
solving real			Home register Checking
integrals.			

References:

Essential Readings:

1) Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book.

2) Essential Mathematical Methods, K. F. Riley and M. P. Hobson, 2011, Cambridge Univ. Press.

3) Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 7 Ed., 2013, Elsevier.

4) Complex Variables and Applications, J. W. Brown and R. V. Churchill, 9th Ed. 2021, Tata McGraw-Hill.

5) Complex Variables: Schaum"s Outline, McGraw Hill Education (2009).

6) Fourier Analysis: With Applications to Boundary Value Problems, Murray Spiegel, 2017, McGraw Hill Education.

7) A Student's Guide to Laplace Transforms, Daniel Fleisch, Cambridge University Press; New edition (2022).

8) Laplace Transform: Schaum"s Outline, M.R. Spiegel, McGraw Hill Education

Additional Readings:

1) Mathematical Physics with Applications, Problems and Solutions, V. Balakrishnan, Ane Books (2017).

2) Complex Variables, A.S.Fokas and M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press.

3) Fourier Transform and its Applications, third edition, Ronald New Bold Bracewell, McGraw Hill (2000).

4) Students Guide to Fourier Transforms: With applications In Physics and Engineering, 3rd edition, Cambridge University Press (2015).

5) Partial Differential Equations for Scientists and Engineers, S.J. Farlow, Dover Publications (1993).

6) Differential Equations – Theory, Technique and practice, George F. Simmons and Steven G. Krantz, Indian Edition McGraw Hill Education Pvt. Ltd (2014).