CURRICULUM PLAN

(Odd Semester, 2020-2021)

B.Sc. (H) Chemistry, I Year (Semester I)

Name of the teacher: Dr. Upasana Issar

Name of Paper: Physical Chemistry I-States of Matter & Ionic Equilibrium (CBCS) UPC: 32171102

Contents	Allocation of Lectures	Month wise schedule to be followed	Tutorial/Assignments /Presentation etc
 Unit 1: Gaseous state Kinetic molecular model of a gas: postulates and derivation of the kinetic gas equation; Behaviour of real gases: Deviations from ideal gas behaviour, compressibility factor, Z, and its variation with pressure and temperature for different gases. Causes of deviation from ideal behaviour. Equation of states for real gases; van der Waals equation of state, its derivation and application in explaining real gas behaviour Virial coefficients 	06	3 rd week of November- 2 nd week of December	 Syllabus Overview Books Suggestions Related Examples and Problem solving session
 Unit 1 (Continued) calculation of Boyle temperature. Isotherms of real gases and their comparison with van der Waals isotherms. Continuity of states, critical state, relation between critical constants and van der Waals constants law of corresponding states. law of equipartition of energy, degrees of freedom and 	07	3 rd week of December- 2 nd week of January	 Numerical Solving Doubt Session Assignment allocation

molecular basis of heat capacities.			
 Unit 1 (Continued) collision frequency; collision diameter; mean free path and viscosity of gases, including their temperature and pressure dependence relation between mean free path and coefficient of viscosity, calculation of σ from η; variation of viscosity with temperature and pressure. Maxwell distribution and its use in evaluating molecular velocities (average, root mean square and most probable) and average kinetic energy 	09	3 rd week of January – 1 st week of February	 Numerical Solving Doubt Session Previous university papers discussion
 Unit 3: Solid state: Law of constancy of interfacial angles, law of rational indices, Miller indices, elementary ideas of symmetry, symmetry elements and symmetry operations, seven crystal systems and fourteen Bravais lattices; X-ray diffraction, Bragg's law, a simple account of rotating crystal method and powder pattern method. Analysis of powder diffraction patterns of NaCl, CsCl and KCl. 	08	2 nd week of February-1 st week of March	 Numerical Solving Doubt Session Assignment Collection Result discussion