Curriculum Plan (EVEN SEM 2025): B. Sc. (H) Mathematics III Year (Semester VI) Paper: DSC-Complex Analysis

Dr. Taj	ender Kumar		Marks Distribution	Theory	90 Marks 40 Marks			
Assistant Profe				Practical				
Department of Kalindi College	Mathematics (University of Delhi)			Internal Assessment	Assignments	12 Marks		
Delhi- 110008 Mobile: +91 7417837644 E- mail :					Home Exams/	12 Marks		
					Class Test			
<u>tajenderkumar</u>	@kalindi.du.ac.in				Attendance	6 Marks		
			Classes Assigned	Lectures	3 per week (Theo	ry)		
			Assigned	Lab	2 per week			
References	 Brown, James Ward, & Churchill, Ruel V. (2014). Complex Variables and Applications (9 McGraw-Hill Education. New York. 							
	Beginning/1 st week	Topics						
	with 3 days	Functions of a complex variable and mappings. [1] Chapter 2 (Sections 13, and 14).						
	02^{nd} Jan 11^{th} Jan.							
	2 nd week	Limits, Theorems on limits, Limits involving the point at infinity.						
	13^{th} Jan. – 18^{th} Jan	[1] Chapter 2 (Sections 15	to 17)					

3 rd week	Continuity and differentiation.		
20^{th} Jan. -25^{th} Jan.	[1] Chapter 2 (Sections 18 to 20).		
4 th week	Cauchy-Riemann equations and examples, Sufficient conditions for differentiability,		
27 th Jan. – 01 st Feb.	Analytic functions and their examples.		
	[1]: Chapter 2 (Sections 21, 22, 23, 25, and 26).		
5 th week	Exponential, logarithmic, and trigonometric functions.		
03 rd Feb 08 th Feb.	[1]: Chapter 3 (Sections 30, 31, 37, and 38).		
6 th week	Derivatives of functions, Definite integrals of functions, Contours.		
10^{th} Feb. -15^{th} Feb.	[1]: Chapter 4 (Sections 41, 42, and 43).		
7 th week	Contour integrals and examples, Upper bounds for moduli of contour integrals.		
17 th Feb. – 22 nd Feb.	[1]: Chapter 4 (Sections 44, 45, and 47).		
8 th week	Antiderivatives, and proof of the antiderivative theorem.		
24 th Feb. – 01 st Mar.	[1]: Chapter 4 (Sections 48, and 49).		
9 th week	Cauchy-Goursat theorem (without proof), Cauchy integral formula and its		
03 rd Mar.– 08 th Mar.	extension with consequences; Liouville's theorem and the fundamental theorem of algebra.		
	[1]: Chapter 4 (Sections 50, 52 to 58).		

10 th week	Cauchy-Goursat theorem (without proof), Cauchy integral formula and its
17 th March. – 22 th	extension with consequences; Liouville's theorem and the fundamental theorem of algebra.
Mar.	[1]: Chapter 4 (Sections 50, 52 to 58).
11 th week	Taylor and Laurent series with examples.
24^{th} Mar. -29^{th} Mar.	[1]: Chapter 5 (Overview of Sections 60 and 61).
	[1]: Chapter 5 (Sections 62 to 66, and 68).
12 th week	Taylor and Laurent series with examples.
31^{st} Mar. – 05^{th} Apr.	[1]: Chapter 5 (Overview of Sections 60 and 61).
	[1]: Chapter 5 (Sections 62 to 66, and 68).
13 th week	Absolute and uniform convergence of power series, Integration, differentiation
07^{th} Apr. – 12^{th} Apr.	and uniqueness of power series.
	[1]: Chapter 5 (Sections 69, 71, and 72).
14 th week	Isolated singular points, Residues, Cauchy's residue theorem, Residue at infinity,
14 th Apr. – 19 th Apr.	Types of isolated singular points.
	[1]: Chapter 6 (Sections 74 to 79).
15 th week with 2	Residues at poles and its examples, An application to evaluate definite integrals
Days	involving sines and cosines.
$21^{\text{st}} \text{ Apr.} - 29^{\text{th}} \text{ Apr.}$	[1]: Chapter 6 (Sections 80, and 81).

	[1]: Chapter 7 (Section 92).				
Dispersal of classes, preparation leave and practical examination begin- 30 April, 2025.					