CURRICULUM PLAN of Prof. Rachana Kumar (Odd Semester, 2023-24)

B. Sc. (H) Physics, I Year

Semester-I

I) Name of the Paper: – DSC-I: Mathematical Physics-I (UPC 222211101), 3 Periods per week

Contents	Allocation of Lectures	Month wise schedule to be followed	Tutorial/Assignment/ Presentation etc.
Unit 2, Vector Differential Calculus: Functions of more than one variable, Partial derivatives, chain rule for partial derivatives. Scalar and vector fields, concept of directional derivative, the vector differential operator ∇ , gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field and their physical interpretation. Laplacian operator. Vector identities.	About 8 lectures	3 rd week of August, 2023	 Introductory classes Syllabus Overview and pattern discussion Reference Books Classes Problem solving
Unit 3, Vector Integral Calculus: Integrals of vector-valued functions of single scalar variable. Multiple integrals, Jacobian, Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of vector fields. Flux of a vector field. Gauss divergence theorem, Green's and Stokes' Theorems (no proofs) and their applications	~12 lectures	Last week of August -September	 Course progression Related Problems Assignment Home Register overview Student's difficulties Google classroom group formation for study material
Unit 1, Ordinary Differential Equations: First order differential equations of degree one and those reducible to this form, Exact and Inexact equations, Integrating Factor, Applications to physics problems	16 lectures	October	 Classes, Problem solving Assignment

Higher order linear homogeneous differential			
equations with constant coefficients, Wronskian			
and linearly independent functions. Non-			
homogeneous second order linear differential			
equations with constant coefficients,			
complimentary function, particular integral and			
general solution, Determination of particular			
integral using method of undetermined			
coefficients and method of variation of			
parameters, Cauchy-Euler equation, Initial value			
problems. Applications to physics problems			
Unit 2. Vector Algebra:	5 Lectures	First two weeks of	• Course progression
		November	• Related Problems
Transformation of Cartesian components of			 Assignment
vectors under rotation of the axes, Introduction			• Home Register
to index notation and summation convention.			overview
Product of vectors - scalar and vector product			• Student's
of two, three and four vectors in index notation			Class test
using δii and $arepsilon iii$ (as symbols only – no rigorous			
proof of properties). Invariance of scalar			
product under rotation transformation.			
Unit 3. Probability Distributions:	4 Lectures	Third week of	Classes
		November	Related Problems
Discrete and continuous random variables,			and applications.
Probability distribution functions, Binomial,			Practice Register
Poisson and Gaussian distributions, Mean and			checking
variance of these distributions.			• Class lest • Previous Vear's
			Ouestion Papers
			discussion
Unit 1, Functions:	2 Lectures	Last week of	 Derivations
		November-till 1 st	Revision session
Plotting elementary functions and their		2023 dispersal of	• Student's
combinations, Interpreting the graphs of		classes	• Internal
tunctions using the concepts of calculus,			Assessment
Taylor's series expansion for elementary			finalization and
functions.			sharing with
			students