Curriculum Plan

Paper Name:	Data Structures
Class Type:	B.A with Computer Applications
Semester:	Π
Teacher Name:	Ms. Neha Singh

S.N.	Schedule (Approximate)	Торіс
1.	January	Unit 1: <u>Growth of Functions, Recurrence Relations</u> : Functions used in analysis, asymptotic notations, asymptotic analysis, solving recurrences using recursion tree, Master
		Theorem.
2.	February	Unit 2: <u>Arrays</u> : array operations, applications, sorting, two-dimensional arrays, dynamic allocation of arrays
		Linked Lists:
<u>Assi</u> <u>Pres</u> <u>Tesi</u>	<u>Assignment(</u> Presentations)	Linked Lists: singly linked lists, doubly linked lists, circularly linked lists, time complexity analysis of operations
	<u>Test (Unit 1 & 2)</u>	Stacks: stack as an ADT, implementing stacks using arrays, implementing stacks using linked lists, applications of stacks; time complexity analysis of operations
3.	March	Unit 2:
		Queues: queue as an ADT, implementing queues using arrays, implementing queues using linked lists
		Deques: double-ended queue as an ADT, time complexity analysis of operations.
		Unit 3:
	<u>Assignment(</u>	Recursion: Recursive functions, linear recursion, binary recursion.
	<u>Presentations)</u> Tests (Unit 2 &	Unit 4:
	<u>3)</u>	Trees: definition and properties
4.	April	Unit 4:
		<u>Binary trees</u> : definition and properties, traversal of binary trees and their time complexity analysis.
		Unit 5:
	Assignment(<u>Binary Search Trees</u> : insert, delete (by copying), search operations, time complexity analysis of these operations;
	Presentations)	Balanced Search Trees: motivation and introduction.

	<u>Tests (Unit 4 & 5)</u>	Unit 6 Binary Heaps: motivation and introduction, application of heaps
5.	May	Unit 6
	<u>Mock Practical</u>	Priority Queues: introduction only
	<u>Viva</u>	
	<u>Mock Exam</u>	REVISION

Essential/recommended readings

- 1. Goodrich, M.T, Tamassia, R., & Mount, D., *Data Structures and Algorithms Analysis in C++*, 2nd edition. Wiley, 2011
- 2. Cormen, T.H., Leiserson, C.E., Rivest, R. L., Stein C. *Introduction to Algorithms*, 4th edition, Prentice Hall of India, 2022.
- 3. Drozdek, A., *Data Structures and Algorithms in C++*, 4th edition, Cengage Learning, 2012.

Additional References

(i) Sahni, S., *Data Structures, Algorithms and applications in* C++, 2nd edition, Universities Press, 2011.

(ii) Langsam Y., Augenstein, M. J., & Tanenbaum, A. M. *Data Structures Using C and C++*, Pearson, 2009.