CURRICULUM PLAN 2025-26

Dr. Ranjana Roy Mishra

(ODD Semesters: I, III, V)

NEP Implemented in Semester I, III & V

B. Sc. (H) Botany Semester III NEP Discipline Specific Core Course – 9: Genetics and Plant Breeding Paper code- 2162012303 (01 August- December 2025)

Name of Paper	Allocation of Lectures/ 08 hours		Tutorial/Assignment etc.	Suggested readings
Discipline Specific Core Cou	rse – 9: Ge	netics and Pl	ant Breeding	
Unit 1. Mendelian Genetics	08 hours	August 2025	Quiz test on google	1. Gardner,
Mendelism: History; Principles of			Classroom	E.J.,
inheritance (numericals), deviations				Simmons,
[Incomplete dominance (Mirabilis				M.J.,
flower color) and codominance				Snustad,
(MN Blood groups)]; Chromosome				D.P. (1991).
theory of inheritance (points of				Principles
parallelism); Multiple allelism				of Genetics,
(ABO blood groups); lethal alleles				John Wiley
(dominant lethal – Huntington's				& sons,
disease and recessive lethal -				India.
Yellow coat color in mice);				8th edition.
Epistasis (all 6 gene interactions);				2. Snustad,
Pleiotropy (definition, example				D.P. and
PKU); Penetrance and expressivity				Simmons,
(definitions, differences, one				M.J. (2010).
example: polydactyly); Polygenic				Principles
inheritance (Nilsson-Ehle's crosses,				of Genetics,
definition, examples - skin colour,				John Wiley
height, fruit weight; numericals);				& Sons Inc.,
brief introduction to sex				India. 5th
determination (Introduction to				edition.
XX/XO in insects for discovery and				3. Klug,
XX/XY mechanism in human and				W.S.,
Drososphila briefly, explain Barr				Cummings,
body as consequence of Dosage				M.R.,
Compensation).				Spencer,

				C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition. 4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic
				to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.
Unit 2. Extra-Nuclear Inheritance Chloroplast and mitochondrial genomes (Semi-autonomous nature of genomes); Chloroplast Inheritance: Variegation in Four O`clock plant; Mitochondrial inheritance in yeast; Maternal effect (Shell coiling in Snails).	2 hours	September 2025	Presentation by students	eamon.
Unit 3. Linkage, crossing over and chromosome mapping Linkage and crossing over (Discovery: Bateson & Punnett crosses in sweet pea, explain crossing over using Morgan's two factor crosses - Black body & Vestigial wings, Complete Linkage, Incomplete Linkage), Cytological basis of crossing over (Creighton and McClintock experiment in Maize); three factor	5 hours	September 2025		

anagagg intenferonce and				
crosses; interference and				
coincidence; Sex linkage				
(Morgan's Red & White eye				
crosses in <i>Drosophila</i>).				
Unit 4. Variation in Chromosome	4 hours	September	Presentation by	
number and structure		2025	students	
Deletion; Duplication; Inversion;				
Translocation (Definition,				
mechanism and one example);				
Euploidy and aneuploidy (In Brief)				
Unit 5. Mutations	4 hours	Mid September		
Mutation types [spontaneous /		to October		
induced, somatic / germinal,		2025		
Biochemical, lethal, silent; point				
(missense, non-sense,				
substitution, addition, deletion /				
indel, frameshift)]; Muller's CIB				
method, Molecular basis of				
mutations (Tautomerism,				
Transitions, Transversions);				
Chemical mutagens (Base				
analogs, deaminating,				
hydroxylating, alkylating and				
intercalating agents) and Physical				
mutagens (Ionising and Non				
ionising radiations);				
Transposable genetic elements				
and their significance				
(Definition, how TEs cause				
mutations, examples of				
Transposons in different				
organisms, Types - copy-paste,				
cut paste, one example of				
Barbara McClintock, Ac-Ds				
Elements - Maize kernel color to	3 hours	Mid		
explain the mechanism.		September to		
1		October 2025		
Unit 6. Population and	4 hours	Mid October to		
evolutionary genetics		November		
Hardy Weinberg law (Allele		2025		
frequencies, genotype frequencies)				
and numericals based on it;				
Speciation - sympatric & allopatric				
speciation, (modes of speciation				
and genetics of speciation).				
	I		l .	

Unit 7. Plant Breeding	November
Plant breeding- Principle and	2025
Practices, domestication and plant	
introduction (primary and	
secondary introduction), selection	
and its types: pure line selection,	
mass selection and clonal selection;	
hybridizations (inter-specific and	
intra-specific with examples in	
cultivated crops: Origin of <i>Triticum</i>	
aestivum,	
Raphanobrassica/Rabbage, 4x and	
6x Triticale, Gossypium hirsutum	
(amphidiploid New World cotton),	
heterosis and its significance	
(Definition of heterosis and its	
advantages/significance).	

PRACTICALS

 To study meiosis in <i>Allium cepa</i> through squash preparation of anthers. To study mitosis in <i>Allium cepa</i> through squash preparation of root tips. To understand the deviations of Mendelian dihybrid ratios (12:3:1, 9:3:4, 9:7, 15:1, 	August 2025 August2025 August 2025
13:3, 9:6:1) involved using the seed mixture given. Genetic ratio to be	September 2025
calculated using Chi square analysis. 4, Human Genetics:	
	September 2025
b) ABO blood group testing using kits,	
c) To study the syndromes (Down's, Klinefelter's, Turner's, Edward's &	September 2025
Patau) through karyotypes	
5. To calculate allelic and genotypic frequencies of human dominant and recessive traits using Hardy- Weinberg's principle.	October 2025
6. To study Xeroderma pigmentosum, Sickle cell anaemia, albinism,	
haemophilia and colour blindness (Ishihara charts may be used to study colour	October 2025
blindness)	
7. To study chromosomal aberrations:	
a) Quadrivalents, lagging chromosomes, dicentric/inversion bridge through	October 2025
photographs / permanent slides	
b) Reciprocal translocation through photograph/permanent slides/squash	November 25
preparations of <i>Rhoeo</i> anthers.	

8. Demonstration of basic methods of plant breeding (hybridizations):		
Emasculation, bagging and tagging using available plant material in	November 25	
pots/gardens/field.		
	November 25	
9. Mock and Final Practical Exam		

B.Sc. (Hons) Botany SemV (NEP) Molecular Biology of the Cell – DSC 13 (August - December 2025)

S.No	Practicals	Schedule
1.	Isolation of plasmid and genomic DNA from <i>E. coli</i> and quantification using agarose gel electrophoresis	August 2025
2.	To estimate the generation time of <i>Escherichia coli</i> (prokaryote) and budding yeast (eukaryote) by spectrophotometric measurement and plotting growth curve as an indirect method to study DNA replication	August 2025
3.	Isolation of genomic DNA from plant samples (atleast two different genera / species) using CTAB method and quantification using agarose gel electrophoresis	August 2025
4	Quantification of unknown DNA by diphenylamine reagent (colorimetry).	September 2025
5	To study control of replication in budding yeast with the help of specific inhibitors (beta-lactams:- Clavulanic acid, Ceftazidime, Piperacillin, Ceftriaxone etc) and studying budding frequency.	September 2025
6	To study control of transcription in <i>Escherichia coli</i> with the help of prokaryotic (Rifampicin) and eukaryotic (Actinomycin-D) transcription inhibitors and plotting growth curve	September 2025
7	To study control of translation in <i>Escherichia coli</i> with the help of prokaryotic (Kanamycin / Streptomycin) inhibitors using an IPTG-	October 2025

	inducible system.	
8.	To understand the regulation of lactose (<i>lac</i>) operon (positive & negative regulation) and tryptophan (<i>trp</i>) operon (Repression and Derepression & Attenuation) through digital resources/data sets.	October 2025
9	Mock and Final Practicals	November- December 2025

B.Sc. (Prog) Life Science BOT-LS- DSC-1 Semester I: (NEP) Plant Diversity and Systematics

S.No	Practicals	Schedule
1	Viruses: EM of TMV and Bacteriophage, Specimens of virus infected plants (any two).	August 2025
2	Bacteria: EM of a bacterium, types through permanent	August
	slides/photographs, specimens of infected plants (any two).	2025
3	Algae: Study of vegetative and reproductive structures of (a) <i>Nostoc</i> (b) <i>Volvox</i> (c) <i>Spirogyra</i> through temporary preparations and permanent slides.	August 2025
4	Fungi: Study of vegetative and reproductive structures of (a) <i>Rhizopus</i> , (b) <i>Penicillium</i> , and (c) <i>Agaricus</i> through temporary preparations and permanent slides/specimens/photographs.	August 2025
5	Lichens: Crustose, Foliose and Fruticose (specimens/photographs).	August 2025
6	Bryophytes: Study of (a) <i>Marchantia</i> morphology of thallus, W.M. rhizoids and scales, V.S. thallus through gemma cup, W.M. gemmae (all temporary slides), V.S. antheridiophore, archegoniophore, L.S. sporophyte (all permanent slides), (b) <i>Funaria</i> : detailed study and classification from W.M. rhizoids, operculum, peristome, spores and permanent slides of archegonia, antheridia and capsule.	September 2025
7	Pteridophytes: Study of <i>Pteris:</i> T. S. of Rachis, V.S. of Sporophyll and W.M. of sporangium.	September 2025
	Gymnosperms: Study of Pinus morphology of long & dwarf	

8	shoot, male and female cones (specimens) and T.S. of needle (permanent slides only).	September 2025
	Herbarium technique (Mounting of a properly dried and pressed	
9	specimen of any wild plant on the herbarium sheet with complete herbarium label).	October 2025
	Taxonomic study of characters of 1 plant from each of the	
10	following families (any four): Malvaceae, Solanaceae, Asteraceae, Fabaceace, and Liliaceae	October 2025
11	Mock and Final Practical Exam	November 2025