<u>CURRICULUM PLAN 2024-25 (Even Semester) Prof. Monika Bassi</u> DSC-12: ANALOG ELECTRONICS Unique Paper Code: 2222012403 <u>B.Sc. (HONS.) PHYSICS PART II, Semester IV</u> <u>No. of Periods per week = 2</u>

No. of reflows per week = 2			
Name of Paper & Code	Allocation of Lectures	Month wise schedule followed by the Department	Tutorial/assignment/ Presentation etc.
DSC-12, ANALOG ELECTRONICS UPC: 222	2012403	·	
Unit 1: Two-terminal Devices and their Applications: IV characteristics of a diode and its application as rectifier (half-wave and full wave rectifier), IV characteristics of a zener diode and its use as voltage regulator, principle, structure and characteristics of (1) LED, (2) Photodiode and (3) Solar Cell	5	February- March	 Derivations Related problems Problem solving Assignments Class Tests Practice Examinations Discussion of Practice Examinations
Unit 2: Bipolar Junction Transistors: n-p-n and p-n-p transistors, IV characteristics of CB and CE configurations, active, cut-off and saturation regions, current gains α and β , relations between α and β , physical mechanism of current flow	4	March	 Derivations Problem solving Assignments Students' difficulties Class Test
Unit 3: Amplifiers and sinusoidal oscillators: Load line analysis of transistor, DC load line and Q-point, fixed bias and voltage divider bias, transistor as 2-port network, h-parameter equivalent circuit of a transistor, analysis of a single-stage CE amplifier using hybrid model (input and output impedance, current and voltage gain) Sinusoidal Oscillators: General idea of positive and negative feedback, Barkhausen's criterion for self-sustained oscillations, RC phase shift oscillator, determination of frequency, Hartley and Colpitts oscillators	11	April	 Derivations Related problems Problem solving Revisions Class Tests Practice Examinations Discussion of Practice Examinations Tips for Final exams
Unit 4: Operational Amplifiers (Black Box approach) Characteristics of an ideal and practical Op-Amp (IC 741), open-loop and closed-loop gain, frequency response, CMRR, slew rate and concept of virtual ground. Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Comparator and Zero crossing detector (7) Wein bridge oscillator	10	January- February	 Syllabus Overview Reference Books Derivations Problem solving Assignments Revisions Class Tests Practice Examinations Students' difficulties