BMATH102: Algebra

Total Marks: 100 (Theory: 75, Internal Assessment: 25) **Workload:** 5 Lectures, 1 Tutorial (per week) **Credits:** 6 (5+1)

Duration: 14 Weeks (70 Hrs.) **Examination:** 3 Hrs.

Course Objectives: The primary objective of this course is to introduce the basic tools of theory of equations, complex numbers, number theory and matrices to understand their connection with the real-world problems. Perform matrix algebra with applications to computer graphics.

Course Learning Outcomes: This course will enable the students to:

- i) Employ De Moivre's theorem in a number of applications to solve numerical problems.
- ii) Learn about equivalent classes and cardinality of a set.
- iii) Use modular arithmetic and basic properties of congruences.
- iv) Recognize consistent and inconsistent systems of linear equations by the row echelon form of the augmented matrix.
- v) Find eigenvalues and corresponding eigenvectors for a square matrix.

Unit 1: Theory of Equations and Complex Numbers

Polynomials, The remainder and factor theorem, Synthetic division, Factored form of a polynomial, Fundamental theorem of algebra, Relations between the roots and the coefficients of polynomial equations, Theorems on imaginary, integral and rational roots; Polar representation of complex numbers, De Moivre's theorem for integer and rational indices and their applications. The *n*th roots of unity.

Unit 2: Equivalence Relations and Functions

Equivalence relations, Functions, Composition of functions, Invertibility and inverse of functions, One-to-one correspondence and the cardinality of a set.

Unit 3: Basic Number Theory

Well ordering principle, The division algorithm in Z, Divisibility and the Euclidean algorithm, Fundamental theorem of arithmetic, Modular arithmetic and basic properties of congruences; Principle of mathematical induction.

Unit 4: Row Echelon Form of Matrices and Applications

Systems of linear equations, Row reduction and echelon forms, Vector equations, The matrix equation $A\mathbf{x} = b$, Solution sets of linear systems, The inverse of a matrix; Subspaces, Linear independence, Basis and dimension, The rank of a matrix and applications; Introduction to linear transformations, The matrix of a linear transformation; Applications to computer graphics, Eigenvalues and eigenvectors, The characteristic equation and Cayley–Hamilton theorem.

References:

1. Andreescu, Titu & Andrica Dorin. (2014). *Complex Numbers from A to...Z.* (2nd ed.). Birkhäuser.

- 2. Dickson, Leonard Eugene (2009). First Course in the Theory of Equations. The Project Gutenberg EBook (http://www.gutenberg.org/ebooks/29785)
- 3. Goodaire, Edgar G., & Parmenter, Michael M. (2005). *Discrete Mathematics with Graph Theory* (3rd ed.). Pearson Education Pvt. Ltd. Indian Reprint 2015.
- 4. Kolman, Bernard, & Hill, David R. (2001). *Introductory Linear Algebra with Applications* (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.
- 5. Lay, David C., Lay, Steven R., & McDonald, Judi J. (2016). *Linear Algebra and its Applications* (5th ed.). Pearson Education.

Additional Readings:

- i. Andrilli, Stephen, & Hecker, David (2016). *Elementary Linear Algebra* (5th ed.). Academic Press, Elsevier India Private Limited.
- ii. Burton, David M. (2012). *Elementary Number Theory* (7th ed.). McGraw-Hill Education Pvt. Ltd. Indian Reprint.

Teaching Plan (BMATH102: Algebra):

Weeks 1 and 2: Polynomials, The remainder and factor theorem, Synthetic division, Factored form of a polynomial, Fundamental theorem of algebra, Relations between the roots and the coefficients of polynomial equations, Theorems on imaginary, integral and rational roots.

[2] Chapter II (Sections 12 to 16, 19 to 21, 24 and 27, Statement of the Fundamental theorem of algebra).

Weeks 3 and 4: Polar representation of complex numbers, De Moivre's theorem for integer and rational indices and their applications, The *n*th roots of unity.

[1] Chapter 2 [Section 2.1(2.1.1 to 2.1.3), Section 2.2 (2.2.1, 2.2.2 (up to Page 45, without propositions), 2.2.3].

Weeks 5 and 6. Equivalence relations, Functions, Composition of functions, Invertibility and inverse of functions, One-to-one correspondence and the cardinality of a set.

[3] Chapter 2 (Section 2.4 (2.4.1 to 2.4.4)), and Chapter 3.

Weeks 7 and 8: Well ordering principle, The division algorithm in \mathbb{Z} , Divisibility and the Euclidean algorithm, Modular arithmetic and basic properties of congruences, Statements of the fundamental theorem of arithmetic and principle of mathematical induction.

[3] Chapter 4 [Sections 4.1 (4.1.2,4.1.5,4.1.6), 4.2 (4.2.1 to 4.2.11, up to problem 11), 4.3 (4.3.7 to 4.3.9), 4.4 (4.4.1 to 4.4.8)], and Chapter 5 (Section 5.1.1).

Weeks 9 and 10: Systems of linear equations, Row reduction and echelon forms, Vector equations, The matrix equation $A\mathbf{x} = b$, Solution sets of linear systems, The inverse of a matrix.

[5] Chapter 1 (Sections 1.1 to 1.5) and Chapter 2 (Section 2.2).

Week 11 and 12: Subspaces, Linear independence, Basis and dimension, The rank of a matrix and applications.

[4] Chapter 6 (Sections 6.2, 6.3, 6.4, and 6.6).

Weeks 13: Introduction to linear transformations, Matrix of a linear transformation; Applications to computer graphics.

[5] Chapter 1 (Sections 1.8 and 1.9), and Chapter 2 (Section 2.7).

Week 14: Eigenvalues and eigenvectors, The characteristic equation and Cayley–Hamilton theorem.

[5] Chapter 5 (Sections 5.1 and 5.2, Supplementary Exercises 5 and 7, Page 328).

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching and Learning Activity	Assessment Tasks
1.	Employ De Moivre's theorem in a number of applications to solve	(i) Each topic to be explained with examples.	• Student

Department of Mathematics, University of Delhi

	_	numerical problems.	(ii) Students to be involved in	presentations.
2		Learn about equivalent classes and	discussions and encouraged	 Participation in
		cardinality of a set.	to ask questions.	discussions.
3		Use modular arithmetic and basic	(iii) Students to be given	 Assignments and
		properties of congruences.	homework/assignments.	class tests.
4		Recognize consistent and inconsistent systems of linear	(iv) Students to be encouraged to give short presentations.	• Mid-term examinations.
		<u> </u>	to give short presentations.	
		equations by the row echelon form		• End-term
		of the augmented matrix.		examinations.
		Find eigenvalues and corresponding		
		eigenvectors for a square matrix.		

Keywords: Cardinality of a set, Cayley–Hamilton theorem, De Moivre's theorem, Eigenvalues and eigenvectors, Equivalence relations, Modular arithmetic, Row echelon form, The Fundamental theorem of algebra.