CURRICULUM PLAN 2025-2026

ODD Semester: VII, V, III, I Dr. Rashmi Menon Department of Physics

B.Sc.(H)-IIIrd year

B.Sc.(H)-III ^{ra} year		
Name of Paper and Code	Allocation of	Month-wise Schedule
	Lectures	followed by the
		department
DSC: DIGITAL ELECTRONICS (2222013503) -45 Periods		
Unit – I - Integrated circuits	2	5-Aug to 6-Aug
Integrated Circuits (Qualitative treatment only),		
active and passive components, discrete		
components, wafer, chip, advantages and		
drawbacks of ICs, scale of integration: SSI, MSI,		
LSI		
and VLSI (basic idea and definitions only),		
classification of ICs, examples of linear and digital		
1Cs		
Unit – II - Digital circuits and Boolean algebra	14	12-Aug to 10-Sept
Difference between analog and digital circuits,		
binary number, decimal to binary and binary to		
decimal conversion, BCD, octal and hexadecimal		
numbers, AND, OR and NOT gates		
(realization using diodes and transistor), NAND		
and NOR gates as universal gates, XOR and		
XNOR gates and application as parity checkers		
De Morgan's theorems, Boolean laws,		
simplification of logic circuit using Boolean		
algebra,		
fundamental products, idea of minterms and		
maxterms, conversion of truth table into		
equivalent logic circuit by (1) Sum of Products		
method and (2) Karnaugh map simplification		
(up to four variables).		
Unit – III - Combinational Logic Circuits	9	16-Sept to 8-Oct
Data processing circuits: Multiplexers and its		- 3 ~ Pr 10 0 0 0 0
applications, de-multiplexers, decoders, encoders		
Arithmetic logic circuits: Express binary number in		
signed and unsigned form, 1's and 2's		
complement representation, binary addition, binary		
subtraction using 2's complement, half and		
full Adders, half and full subtractors, 4-bit binary		
adder/subtractor using 2's complement		
method.		
memou.		

Unit – IV - Sequential Logic Circuits Flip Flops SR, D, and JK clocked (level and edge triggered) flip-flops, preset and clear operations, race-around conditions in JK flip-flop, master-slave JK flip-flop, conversion of one flip flop to another using an excitation table.	8	14-Oct to 29-Oct
Unit – V - Application of Sequential Logic Circuits Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel in-Parallel-out Shift Registers (only up to 4 bits). Counters: Asynchronous counters, MOD-N synchronous counter designing using excitation table.	9	4-Nov to 19-Nov
Unit – VI – Timers IC 555: Pin -out diagram, block diagram and its applications as a stable multivibrator and monostable multivibrator	3	25-Nov to 26-Nov