Curriculum Plan (Even Semester 2021-22)

B.Sc. (H) Chemistry, III Year (Semester VI)

UPC: 32171602

Paper Name: Organic Chemistry V: Spectroscopy and Applied Organic Chemistry (LOCF)

Teacher Name: Dr. Renu Bala & Dr. Meenakshi Verma

Month: January-April 2022

Contents	Allocation of Lectures	Month wise schedule to be followed	Tutorial/Assignments /Presentation etc
UNIT 1: Organic Spectroscopy General principles Introduction to absorption and emission spectroscopy. <i>UV Spectroscopy</i> : Types of electronic transitions, λ_{max} , Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption; Application of Woodward Rules for calculation of λ_{max} for the following systems: α,β -unsaturated aldehydes, ketones, carboxylic acids and esters; Conjugated dienes: alicyclic, homoannular and heteroannular; Extended conjugated systems (aldehydes, ketones and dienes); distinction between cis and trans isomers by UV	8	First week January- Fourth week January	Syllabus Overview References Books Lectures Numerical Solving Doubt Session
<i>IR Spectroscopy</i> : Fundamental and non-fundamental molecular vibrations; IR absorption positions of O, N and S containing functional groups; Effect of H-bonding, conjugation, resonance and ring size on IR absorptions; Fingerprint region and its significance; application of IR in functional group analysis.	8	First week February- Fourth week February	Lectures Numerical Solving Doubt Session Assignment Distribution
<i>NMR Spectroscopy</i> : Basic principles of Proton Magnetic Resonance, chemical shift and factors influencing it; Equivalent and non-equivalent protons, Spin – Spin coupling and coupling constant; Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple compounds. Applications of IR, UV and NMR for identification of simple organic molecules.	14	First week March- Fourth week April	Lectures Assignment Class Test Doubt Session Numerical Solving Previous Years University Papers Discussion
UNIT 2: Dyes	8	First week	Syllabus Overview

Classification, Colour and constitution; Mordant and Vat Dyes; Chemistry of dyeing. Synthesis and applications of Azo dyes – Methyl orange, Congo red; Triphenyl methane dyes-Malachite green, Rosaniline and Crystal violet; Phthalein Dyes – Phenolphthalein; Natural dyes –Structure elucidation and synthesis of Alizarin and Indigotin; Edible Dyes with examples.		January- Fourth week January	References Books Lectures Class discussion
Unit 3: Pharmaceutical Compounds Classification, structure and therapeutic uses of antipyretics - Paracetamol (with synthesis); Analgesics Ibuprofen (with synthesis); Antimalarials - Chloroquine (with synthesis); Antitubercular drugs - Isoniazid. An elementary treatment of Antibiotics and detailed study of chloramphenicol, Medicinal values of curcumin (haldi), azadirachtin (neem), vitamin C and antacid (ranitidine).	10	First week February- Second week March	Lectures Class discussion Assignment Distribution
Unit 4: Polymers Introduction and classification including di-block, tri-block and amphiphilic polymers; weight average molecular weight, number average molecular weight, glass transition temperature (Tg) of polymers; Polymerisation reactions -Addition and condensation. Mechanism of cationic, anionic and free radical addition polymerization; Ziegler-Natta polymerisation of alkenes. Preparation and applications of plastics – thermosetting (phenol-formaldehyde, Polyurethanes) and thermosoftening (PVC, polythene); Fabrics – natural and synthetic (acrylic, polyamide, polyester). Rubbers – natural and synthetic, Buna-S, Chloroprene and Neoprene. Vulcanization - Polymer additives; Introduction to Biodegradable and conducting polymers with examples.	12	Third week March – Fourth week April	Lectures Assignment Class Test Doubt Session Presentations Numerical Solving Previous Years University Papers Discussion

DR. RENU BALA

DR. MEENAKSHI VERMA

Department of Chemistry