CURRICULUM PLAN (Aug. -Dec., 2025) Dr. MAYANGLAMBAM ROJINA DEVI

Subject- Evolutionary Ecology (DSC 15; Theory) Class- B. Sc. Life Science Sem. V

Contents	Allocation of lectures	Month-wise schedule to be followed	Tutorial/ Assignments / Presentations
UNIT- 1: Introduction to Evolutionary Ecology 3 hrs Introduction to the concepts of evolution and ecology and the relationship, evolutionary theories and origin of life, Levels of ecological hierarchy, heritability, natural selection, fitness and adaptation; Types of selection, Ecological adaptations of animals to their environment	3 lectures	August	 Overall introduction to this paper PPT with relevant pictures and videos
UNIT- 2: Population Ecology 7 hrs Group attributes- Density, natality, mortality, dispersal and dispersion, life tables, fecundity tables, survivorship curves, age ratio, sex ratio, dispersal and dispersion. Population growth- Exponential and logistic growth, Life history traits - r and K selection. Population regulation - Density dependent and independent. Population interactions: Positive and negative interactions	7 lectures	August	 2 minutes recap of previous class PPT with relevant pictures
UNIT- 3: Community Interactions 6 hrs Characteristics of community- species richness, dominance, diversity and abundance. Community organisation – habitat, niche, guilds, and dominant species. Interspecific interactions with examples. Species diversity indices. Types of ecological succession. Characteristics of climax community, Concept of keystone, flagship, umbrella species with examples.	6 lectures	September	 Discussion through PPT Surprise quiz Distribution of assignments
UNIT- 4: Processes of Evolutionary Change and Species Concept Natural selection and its types, Genetic drift, Artificial selection. Species concept, Isolating mechanisms, Modes of speciation (Allopatric, Sympatric, Parapatric and	7 lectures	September	 Discussion through PPT Surprise quiz

Peripatric), Adaptive radiation/macroevolution (Darwin finches).			
UNIT- 5: Coevolution Introduction to coevolution; types of coevolution (pairwise coevolution, diffuse coevolution, and gene-for-gene coevolution); Co-evolutionary interactions (Coevolution of competitors, Predator-prey coevolution, Host-parasite coevolution, Coevolution of mutualists); Evolutionary equilibria. Approaches to examine coevolution; Cospeciation and diversification.	4 lectures	October	LectureClass test
UNIT- 6: Macroecology Introduction to macroecology: patterns and constraints; macroecological datasets; statistical patterns of abundance, distribution and diversity; Allometry: metabolism, body size and temperature; Macroecology of humans; Conservation macroecology: assessing, prioritizing, and quantifying biodiversity at large scales; Extinction dynamics.	3 lectures	November	 2 minutes recap of previous class PPT with relevant pictures REVISION

Subject- Evolutionary Ecology (DSC 15; Practical) Class- B. Sc. Life Science Sem. V Shared with- Dr. Kanchan Batra and Mr. Gulshan Yadav

Month	Practical
August 2025	 Study of Phytoplankton and zooplankton from an aquatic ecosystem Measurement of temperature, turbidity/penetration of light, determination of pH Determination of Dissolved oxygen content (Winkler's method) from different water samples
	 Determination of Free carbon dioxide and hardness in different water sample Study of life tables and plotting of survivorship curves of different types from hypothetical/ real data

	Determination of population density in a natural or a hypothetical community by quadrate method and calculation of Shannon-Weiner diversity index
September 2025	 Determination of Chemical oxygen demand from different water samples
	Determination of chlorides in different water sample
	 Study and verification of Hardy-Weinberg Law by Chi-square analysis
	Catch, mark and recapture technique for finding the population size.
	• Lotka-Volterra equation significance in competition; Lotka-Volterra equation, functional and numerical responses in Predation
	• Study of homology, analogy and homoplasy from suitable specimens
October 2025	Gause's Principle with laboratory and field examples
	Construction of cladograms based on morphological characters
	A visit to a National Park/Biodiversity Park/Wildlife Sanctuary
November	REVISION and MOCK PRACTICAL TEST