Curriculum Plan (Odd Semester 2022-2023) Semester-V

Teacher Name: Dr. Shiv Kumar

Name of Paper & Code: 42177925, B.Sc. LIFE SCIENCE –DSE, Chemistry of d-Block Elements, Quantum Chemistry, Photochemistry, & Spectroscopy (4 Periods Per Week)

Contents	Allocations of Lectures	Month wise Schedule to	Tutorials/ Assignment/ Presentation
Transition Floments (2d series)		De lollowed	r resentation
Transition Elements (3d series): General properties of elements of 3d series with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties and ability to form complexes. A brief introduction to Latimer diagrams (Mn, Fe and Cu) and their use to identify oxidizing, reducing species and species which disproportionate. Calculation of skip step potentials. Lanthanoids and actinoids: Electronic configurations, oxidation states displayed. A very brief discussion of colour and magnetic properties. Lanthanoid contraction (causes and consequences), separation of lanthanoids by ion exchange method.	10	July – 23rd week of August– 13th	Related Problems, Class Test, Home - Register Overview, -Related Problems, -Previous Year Qsn Papers discussion, - Assignm
Coordination Chemistry: Brief discussion with examples of types of ligands, denticity and concept of chelate. IUPAC system of nomenclature of coordination compounds (mononuclear and binuclear) involving simple monodentate and bidentate ligands. Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Bonding in coordination compounds: Valence Bond Theory (VBT): Salient features of theory, concept of inner and outer orbital complexes of Cr, Fe, Co and Ni. Drawbacks of VBT. Crystal Field Theory: Splitting of d orbitals in octahedral symmetry. Crystal field effects for weak and strong fields. Crystal field stabilization energy (CFSE), concept of pairing energy. Factors affecting the magnitude of Δ . Spectrochemical series. Splitting of d orbitals in tetrahedral symmetry. Comparison of CFSE for octahedral and tetrahedral fields, tetragonal distortion of octahedral geometry. Jahn-Teller	6	August –16 th week of August – 27 th August –29 th week of September – 24 th	ent - Syllabus Overview - Reference Books - Problem Solving
distortion, square planar coordination.			

Quantum Chemistry: Postulates of quantum	12	September	- Related
mechanics, quantum mechanical operators. Free		-26 th week	Problems,
particle. Particle in a 1-D box (complete		of October	Class Test,
solution), quantization, normalization of wave		-18^{th}	Home -
functions, concept of zero-point energy.			Register
Rotational Motion: Schrödinger equation of a			Overview,
rigid rotator and brief discussion of its results			-Related
(solution not required). Quantization of			Problems,
rotational energy levels. Vibrational Motion:			-Previous
Schrödinger equation of a linear harmonic			Year Qsn
oscillator and brief discussion of its results			Papers
(solution not required). Quantization of			discussion,
vibrational energy levels.			-
			Assignment
Spectroscopy: Spectroscopy and its importance	12	October-	
in chemistry. Wave-particle duality. Link		22nd week	
between spectroscopy and quantum chemistry.		of	
Electromagnetic radiation and its interaction		November –	
with matter. Types of spectroscopy. Difference		5 th	
between atomic and molecular spectra. Born-			
Oppenheimer approximation: Separation of			
molecular energies into translational, rotational,			
vibrational and electronic components.			
Microwave (pure rotational) spectra of diatomic			
molecules. Selection rules. Structural			
information derived from rotational			
spectroscopy. IR Spectroscopy: Selection rules,			
IR spectra of diatomic molecules. Structural			
information derived from vibrational spectra.			
Vibrations of polyatomic molecules. Group			
frequencies. Effect of hydrogen bonding (inter-			

and intramolecular) and substitution on vibrational frequencies. Electronic Spectroscopy:			
Electronic excited states. Free electron model			
and its application to electronic spectra of			
polyenes. Colour and constitution,			
chromophores, auxochromes, bathochromic and			
hypsochromic shifts.			
Photochemistry: Laws of photochemistry. Lambert-Beer's law. Fluorescence and phosphorescence. Quantum efficiency and reasons for high and low quantum yields. Primary and secondary processes in photochemical reactions. Photochemical and thermal reactions. Photoelectric cells.	6	November – 7 th week of November – 15 th	- Syllabus Overview - Reference Books - Problem Solving