Curriculum Plan by Dr. Sajid Iqbal

Even Semester (2021-22)

B.Sc. (H) Chemistry (I year) Semester- II

Name of Paper and code: Physical Chemistry II: Chemical Thermodynamics and its Applications, UPC: 32171202

2 Periods per Week

Contents	Allocation of	Month wise schedule to
	Lectures	be followed
Chemical Thermodynamics: Intensive and extensive	4 Lectures	7^{th} April – 3^{rd} week of
variables; state and path functions; isolated,		April
closed and open systems.		
Mathematical treatment - Exact and inexact differential,		
Partial derivatives, Euler's reciprocity rule, cyclic		
rule.		
First law: Concept of heat, Q, work, W, internal energy,	12 Lectures	3^{rd} week of April -4^{th}
U, and statement of first law; enthalpy, H, relation		week of May
between heat capacities, Joule Thompson Porous Plug		
experiment, Nature of Joule Thompson		
coefficient, calculations of Q, W, ΔU and ΔH for		
reversible, irreversible and free expansion of gases (ideal		
and van der Waals) under isothermal and adiabatic		
conditions.		
Thermochemistry: Enthalpy of reactions: standard		
states; enthalpy of neutralization, enthalpy		
of hydration, enthalpy of formation and enthalpy of		
combustion and its applications, bond dissociation		
energy and bond enthalpy; effect of temperature		
(Kirchhoff's equations) on enthalpy of reactions.		
Second Law: Concept of entropy; statement of the	12 Lectures	4^{th} week of May – 2^{nd} week
second law of thermodynamics, Carnot cycle.		of July
Calculation of entropy change for reversible and		
irreversible processes (for ideal gases). Free Energy		
Functions: Gibbs and Helmholtz energy; variation of S,		
G, A with T, V, P; Free energy change and		
spontaneity (for ideal gases). Relation between Joule-		
Thomson coefficient and other thermodynamic		
parameters; inversion temperature; Gibbs-Helmholtz		
equation; Maxwell relations; thermodynamic		
equation of state.		