CURRICULUM DEVELOPMENT PLAN: Dr. Monika Bassi B.Sc. (H) PHYSICS, Second Year, Semester IV CBCS (2021-2022, Even Semester) No. of Periods per week = 4

Name of Paper & Code	Allocation of Lectures	Month wise schedule followed by the Department	Tutorial/assignment/ Presentation etc.
CC-X: Analog Systems and			
Applications (32221403)			
1. Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity.PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Derivation for Barrier Potential, Barrier Width and Current for abrupt Junction. Equation of continuity, Current Flow Mechanism in Forward and Reverse Biased Diode.	9	January	 Syllabus Overview Reference Books Problem solving Two assignments Previous years Question Papers' problems Students' difficulties
 Two-terminal Devices and their Applications: Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter, (2) Zener Diode and Voltage Regulation.Principle, structure and characteristics of (1) LED, (2) Photodiodeand (3) Solar Cell, Qualitative idea of Schottky diode and Tunnel diode. 	7	February	 Problem solving Assignments Students' difficulties Class Test Previous years Question Papers' problems
 Bipolar Junction Transistors: n-p-n and p-n- p Transistors. I-V characteristics of CBand CE Configurations.Active, Cutoff and Saturation Regions. Current gains α and β. Relations between α and β. Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. 	6	February	 Derivations Related Problems Assignment Students' difficulties Revision Previous years Question Papers' problems

4.	Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network.h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers.	10	February- March	 Derivations Related Problems Students' difficulties Assignments Previous years Question Papers' problems
5.	Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response.	4	March	 Derivations Related Problems Students' difficulties Previous years Question Papers' problems
6.	Feedback in Amplifiers: Positive and Negative Feedback. Effect of negative feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise.	4	March	 Derivations Related Problems Assignment Students' difficulties Previous years Question Papers' problems Revision session
7.	Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency.Hartley &Colpitts oscillators.	4	March	 Derivations Related problems Revisions Practice Examinations Discussion of Practice Examinations and last year Examination Papers
8.	Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.	4	January	 Derivations Related problems Revisions Practice Examinations Discussion of Practice Examinations and last

			year Examination Papers
 9. Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Comparator and Zero crossing detector (8) Wein bridge oscillator. 	9	April	 Derivations Related problems Revisions Practice Examinations Class Test Discussion of Practice Examinations and last year Examination Papers
10. Conversion: D/A Resistive networks (Weighted and R-2R Ladder). Accuracy and Resolution.	3	April	 Derivations Related problems Revisions Practice Examinations Discussion of Practice Examinations and last year Examination Papers Tips for Final exams